Preview

Civil Aviation High Technologies

Advanced search
Vol 27, No 2 (2024)
View or download the full issue PDF (Russian)

TRANSPORTATION SYSTEMS

8-24 290
Abstract

The paper considers the application of pretrained neural networks to solve the problem of reverse searching of X-ray images of prohibited items and substances. The purpose of the work is to conduct an analysis and substantiate ways to improve the efficiency of baggage and passenger hand luggage X-ray image recognition systems. An analysis of existing domestic and foreign works in the field of baggage and passenger hand luggage X-ray image recognition is presented. It has been revealed that, despite the achieved results in the development of algorithms for recognizing prohibited items and substances, they do not fully cope with such a complexity factor as the overlay of objects. To solve this problem, the paper proposes to additionally analyze X-ray images with low confidence in object recognition. This stage includes the following steps: image segmentation, extraction of features of segmented image elements; search for similar images in the database; decision-making on the class of segmented image elements. This article discusses the last three steps. Variants of approaches to feature extraction from images are analyzed, particularly those based on the application of convolutional autoencoders and pretrained neural networks. The approach based on the application of pretrained neural networks is chosen. The ResNet-50 architecture neural network, pretrained on the ImageNet collection, is used during the work. In order to apply this model to extract image feature vectors, the last classification layer was preliminarily removed. All the previous layers of the model encode the image into a vector. ResNet-50 generates a 2048-dimensional feature vector of images. The principal component analysis is used to reduce the dimensionality of the image feature vectors. The decision of whether the segmented image element is a prohibited item or substance is considered as a reverse search problem using the k-nearest neighbor algorithm. In this case, the class of the X-ray image element is the class most frequently encountered among the K nearest neighbors. In order to test the proposed approach, a training dataset, including 4,635 images of individual items and substances that may be encountered in baggage and passenger hand luggage, was generated. A comparative analysis of image indexing and image search under different algorithms and feature number is presented. A comparative analysis of the model accuracy is provided. It is concluded that the most acceptable is the “Brute force” algorithm in combination with the principal component analysis.

25-42 587
Abstract

The problem of aircraft collision with birds (bird strike) is becoming more relevant with the growing trends of air transportation. According to the International Civil Aviation Organization (ICAO), over the seven-year period, 97751 aircraft collisions with animals in 105 countries around the world were recorded. In approximately half of the cases (56093 incidents), damage to the aircraft of various types is reported. According to some estimates, the annual damage from aircraft bird strikes is about 610 million US dollars. The article analyzes the effect of the aircraft bird strike threat (ornithological danger) on flight safety. The statistics of the aviation incidents with birds for the period 2010–2022 according to the figures from ICAO and the Federal Air Transport Agency of Russia are considered. The problems of risk assessment and ornithological flight safety and existing research works in this scientific field are analyzed. The main problems and shortcomings of the existing approaches are emphasized and discussed. A new concept for ornithological flight safety by dividing threats into those in a field of partial uncertainty and those in a field of deep uncertainty is proposed by the author. Making decisions in a particular field requires the use of specific tools. To solve the problem of ornithological flight safety under the threats in a field of deep uncertainty, a Dynamic Adaptive Planning (DAP) tool, that allows to develop and maintain the work of the plans with constant monitoring of the quality of their implementation is proposed. An example of the functioning of a decision-making algorithm and the assignment of critical points (triggers) to monitor the effectiveness of an airline’s plan with the aim of achieving specified ornithological flight safety indicators is given. An analysis of the results of the work showed that solving the problems in a field of deep uncertainty is a complex scientific task, however, the use of the new tools for scenario modeling will improve the quality of the Airline operation in providing ornithological flight safety, which will ultimately have a positive effect on reducing the risk of aviation incidents.

MECHANICAL ENGINEERING

43-59 271
Abstract

The paper considers a design process of an aerodynamic rudder, which structure comprises the skin of constant thickness, a load-bearing structure and a trimmed nose that plays the role of an anti-flutter balancer. The aim of the work is to set and solve the design problem of a rational structural and technological solution of the rudder that meets the requirements of strength, rigidity, aeroelastic stability and minimum mass. To solve this problem, a design algorithm for the rudder, using topological and parametric optimization, is proposed. The main parameters of the design area and the trimmed nose required for topological optimization are determined. The ANSYS Workbench software package was used for the finite element analysis and topological optimization. Based on the results of optimization, post-processing was carried out. A structural and technological solution, that combines structural layouts with constant and variable width of the trimmed nose, was proposed. An analysis of the stress-strain state was carried out, and it was found that the designed structure meets the strength requirements for the given design case. A scheme for solving the parametric optimization problem of the rudder under the condition of aeroelastic stability is proposed. Within the framework of solving this problem, a flutter study was conducted, using a multi-mode model, which makes it possible to study the rudder and body-rudder flutter forms of an unmanned aerial vehicle (UAV) equipped with aerodynamic rudders. The results of the flutter study for the design mode of the UAV flight are obtained in the form of dependencies of the critical flutter velocity and frequency on the average width of the trimmed nose. The analysis of these dependencies allowed us to derive the optimal values of the trimmed nose parameters from the minimum weight condition for two rudder configurations: with a constant and variable width of the trimmed nose.

60-68 230
Abstract

Flexible response of the airframe structural elements under operational loads are one of the main sources of fatigue damage accumulation. It is known that fuel sloshing in tanks can change the dynamic (frequencies and shapes of natural oscillations) and dissipative properties (oscillation damping decrements) of an elastic system, including partially or completely fuelfilled tanks. It is specified that fuel sloshing in tanks due to the additional oscillation energy dissipation of the elastic system can have a significant impact on both the fatigue and aeroelastic characteristics of aircraft structural elements. Theoretical and experimental studies, applicably to the majority of currently operating transport aircraft, have shown that when modeling dynamic phenomena and solving aeroelasticity problems, fuel can be considered conditionally solidified, which actually does not affect the resultant effect. The advent of modern heavy transport aircraft with a high aspect ratio wing and four engines on pylons under the wing has led to a considerable change in the dynamic picture of the aircraft interaction with the environment. The main feature is that, under this arrangement, the first horizontal bending mode of the wing is embedded in the main flexible modes that determine the dynamic response to external effects. In this case, the model of solidified fuel can have a significant impact on the accuracy of predicting dynamic loads and, as a consequence, on the quantitative characteristics of durability and aeroelasticity. The article presents the results of experimental studies of the impact of fluid sloshing in the tank on the dynamic characteristics (frequencies of natural oscillations and amplitudes of forced oscillations) of the “wing model – fuel tank” system. The design of the experimental installation and the methodology of conducting experiments are described. During the experiment, the tank was partially filled with liquid or full, and horizontal bending modes of the wing model, for which considering liquid sloshing in the tank is the most relevant, were studied. The tank refueling levels are determined at which the maximum effect of the system oscillation damping is achieved due to energy dissipation under liquid sloshing. The effect of various factors (presence of a top cover, internal structural frame, perforation in the structural frame) on the amplitudes and frequencies of forced oscillations is analyzed.

69-79 297
Abstract

Currently, the applicable scope of unmanned aircraft application is increasingly expanding. The promising field of unmanned aircraft enhancement is the implementation of some collaborative actions during controlled flight. This paper considers some issues of the group application of unmanned aerial vehicles (UAV) related to the coordinated planning and control of UAVs performing surveillance missions. Performing aerial search operations is technically complicated by the requirement to recognize a search object in arbitrary conditions, which can be both simple and severe environment. The search area is limited by the UAV capabilities, so, in order to improve the efficiency of search operations, UAVs are combined into groups. An algorithm for solving the problem of object search in arbitrary conditions by a group of unmanned aircraft is proposed. The advantage of search by a group of unmanned aircraft is the coverage of the larger search area in a conventional unit of time. This paper addresses the unmanned aircraft configuration, containing both the means of collaborative flight operation and a synthetic vision system. The image obtained by the synthetic vision system is both a source of navigation information and a means which reliably determines the result of search operations. Depending on the conditions of search operations, the image obtained by the synthetic vision system may require additional processing to use as intended. A fusion algorithm is proposed, which is characterized by adaptive adjustment of parameters in each frame individually for different image fragments. Based on the results obtained, it is planned to create a new product for commercial operation of unmanned aircraft.

80-93 401
Abstract

The vortex ring states are observed when the rotor is flowed at positive angles of attack. For the main rotor, these conditions are realized during a steep descent of the helicopter at low speeds. The rotor vortex ring states are affected by significant phenomena related to the behavior of its aerodynamics, including negative phenomena. The latter is, firstly, referred to decrease in rotor thrust, increase in the required power, pulsations of thrust and torque, unsteady flapping blade motion, etc. In terms of helicopter piloting, it means a sharp loss of altitude, increase in the control force, a high level of vibration, defocusing attenuation of rotor spinning cone, as well as controllability deterioration. All these factors determine the relevance of research on these modes and the importance of solving a problem of defining their boundaries. Recently, due to the rapid development of computer technologies and computational models, it has become practical to perform numerical research of the rotor aerodynamics in vortex ring states. The paper presents the study results of Ka-226T helicopter coaxial rotor aerodynamics in steep descent modes in the field of vortex ring states. The angles of rotor attack αВ = 90...30° and the range of vertical descent velocities Vу = 0...26 m/s are considered. The original nonlinear bladed vortex model of the rotor developed at the Moscow Aviation Institute (MAI) was used. The total and distributed aerodynamic rotor characteristics were calculated. The shapes of the vortex wake and the rotor flow patterns were analyzed. The boundaries of the vortex ring states in velocity coordinates “Vx − Vу” were constructed according to various criteria reflecting the known features of these states. The results obtained significantly complement the existing experience of experimental and numerical research in this field.

94-102 202
Abstract

A feature of modern heavy transport aircraft is their layout with engines on elastic pylons under the wing, with the fuel tanks located in the wing consoles. In this case, the main elastic tones of the aircraft’s own oscillations, which determine its dynamic response to external disturbing influences, include the so-called motor tones (vertical and horizontal (lateral) oscillations of engines on elastic pylons). A new type of flutter has appeared – pylon, which for some aircraft determines the critical flutter speed of the aircraft as a whole. The main reason for this phenomenon is the low oscillation damping of the engine on the pylon under the wing. Therefore, research aimed at modernizing the engine mounting points on the pylon in order to reduce the level of elastic oscillations during aircraft operation seems relevant. One of the possible ways to solve this problem is to use the concept of a freed engine, when the engine attachment points to the pylon are modernized, providing more effective damping of engine oscillations. In order to confirm the possibility of practical implementation of these solutions, corresponding experimental studies were carried out on an experimental setup developed by the authors. A design of engine mounting units has been developed that allows specified displacements of the engine relative to the pylon during forced elastic oscillations of the system, which includes a hinged suspension, installation of additional elastic elements and hydraulic dampers.The article presents the results of studies of the influence of elastic-dissipative parameters (partial frequency of natural oscillations and partial decrement of oscillations) of an engine mount on an elastic pylon on the dynamic characteristics of the dynamic system “wing model – elastic pylon – engine”. It is shown that by introducing specially designed engine suspension units on pylons, it is possible to significantly change the dynamic characteristics (frequencies and amplitudes of natural oscillations) of the elastic system as a whole. Thus, the amplitudes of oscillations of the engine’s center of mass in the region of motor tones decrease by 3...7 times during forced harmonic oscillations.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)