Preview

Научный вестник МГТУ ГА

Расширенный поиск

Научный вестник МГТУ ГА - научно-практический рецензируемый журнал.

Научный Вестник МГТУ ГА издается Московским государственным техническим университетом гражданской авиации с 1998 г., включен в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, утвержденный Президиумом Высшей аттестационной комиссии Российской Федерации.

Журнал зарегистрирован Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): Свидетельство о регистрации средства массовой информации ПИ № ФС 77-47989 от 27 декабря 2011 г.

Подписку на печатную версию журнала можно оформить на сайте Агентства «Книга Сервис», на сайте Пресса России или на сайте Почта России. Подписной индекс 84254.

Журнал Научный Вестник МГТУ ГА публикует статьи на русском и английском языках с периодичностью выхода 6 номеров в год.

Целью журнала Научный Вестник МГТУ ГА является содействие развитию инновационных фундаментальных и прикладных научных исследований в области аэронавигации и эксплуатации авиационной техники, а также продвижение их результатов в российское и международное научное сообщество.

Основными направлениями научных публикаций журнала выступают летная и техническая эксплуатация воздушных судов, организация производства в авиапредприятиях, организация перевозок на воздушном транспорте, эксплуатация наземного оборудования, навигация и управление воздушным движением, безопасность полетов, авиационная безопасность, аэромеханика, аэродинамика, конструкция и прочность летательных аппаратов.

Разделы журнала:

Машиностроение — 2.5.0.

2.5.12. Аэродинамика и процессы теплообмена летательных аппаратов (технические науки)

2.5.13. Проектирование, конструкция и производство летательных аппаратов (технические науки)

2.5.14. Прочность и тепловые режимы летательных аппаратов (технические науки)

2.5.15. Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов (технические науки)

2.5.16. Динамика, баллистика, управление движением летательных аппаратов (технические науки)

Транспортные системы — 2.9.0.

2.9.1. Транспортные и транспортно-технологические системы страны, ее регионов и городов, организация производства на транспорте (технические науки)

2.9.4. Управление процессами перевозок (технические науки)

2.9.6. Аэронавигация и эксплуатация авиационной техники (технические науки)

2.9.8. Интеллектуальные транспортные системы (технические науки)

К публикации в Научном Вестнике МГТУ ГА принимаются оригинальные, ранее не опубликованные и не предназначенные для публикации в другом издании статьи российских и иностранных ученых, преподавателей и научных работников, а также аспирантов высших учебных заведений, содержащие результаты фундаментальных, теоретико-прикладных и экспериментальных исследований.

Редколлегия приглашает к сотрудничеству ученых и исследователей в области аэронавигации и эксплуатации авиационной техники, а также специалистов смежных областей знаний для публикации научных статей и творческого обмена новыми научными сведениями и достижениями.

Текущий выпуск

Том 26, № 4 (2023)
Скачать выпуск PDF

ТРАНСПОРТНЫЕ СИСТЕМЫ 

8-20 96
Аннотация

В данной работе объектом исследования является обледенение поверхностей воздушных судов при полете в атмосфере. На многих легких летательных аппаратах, а также на беспилотных воздушных судах массой менее 30 кг отсутствуют бортовые противообледенительные системы. Тем не менее с данными летательными аппаратами происходят авиационные события, которые являются следствием их обледенения. Поэтому определение наиболее опасных режимов полета летательных аппаратов в условиях обледенения является актуальной задачей. Ввиду высокой стоимости проведения летных испытаний и невозможности охвата всех возможных событий из-за их потенциальной опасности, сложности создания условий полета воздушных судов в условиях обледенения на земле в настоящем исследовании был использован метод математического моделирования. Для решения поставленной задачи в рамках работы проведен анализ норм летной годности гражданских легких самолетов, самолетов транспортной категории, винтокрылых аппаратов нормальной и транспортной категории, проведено исследование влияния различных параметров на толщину нарастания льда с помощью вычислительного эксперимента, проведенного на разработанном авторами статьи программном обеспечении. На основе результатов вычислительного эксперимента были получены зависимости толщины льда от различных параметров обледенения, была разработана методика определения сочетания высот и скоростей полета воздушного судна, при которых на поверхности летательных аппаратов при прочих равных условиях образуется лед наибольшей толщины. Обладание данной информацией позволит экипажу летательного аппарата и специалистам по управлению воздушным движением избегать наиболее опасных режимов полета с точки зрения обледенения. 

21-30 63
Аннотация

Современные условия хозяйственной деятельности эксплуатационных предприятий гражданской авиации актуализируют проблему экономически целесообразных мероприятий по организации технической эксплуатации и обслуживания отраслевого оборудования, в частности средств радиотехнического обеспечения полетов и электросвязи. При этом очевидна необходимость перевода указанных средств на техническое обслуживание по состоянию, вызывающего в свою очередь необходимость решения задач, связанных с определением времени предупредительной замены элементов, диагностируемые параметры которых могут достигнуть предельных значений. В настоящем исследовании разработан алгоритм оценки оптимальной замены элементов с помощью метода условной вероятностной характеристики для систем длительного периода эксплуатации и имеющих фиксированное число отказов. Проведена оценка точности определения искомого параметра при условии, что его изменения имеют детерминированную и случайную составляющие. Найдены математическое ожидание и дисперсия полученной оценки. При условии что время функционирования средств между восстановлениями (ремонтами) имеет тенденцию к уменьшению с увеличением числа отказов, получено среднее число конечных отказов, удовлетворяющее интегральному уравнению Вольтерры. Для анализа стоимостных затрат на восстановление в рамках предложенной модели найдено выражение для удельной стоимости работ в зависимости от принятого правила замены и длины ожидаемых циклов. С учетом математического ожидания последней и сопутствующих затрат сформировано двумерное оптимальное правило замены и показана целесообразность использования такого периода замен, который минимизировал максимум средних затрат. Полученные результаты представляются полезными при организации мероприятий по профилактическому обслуживанию средств радиотехнического обеспечения полетов и электросвязи на различных этапах их жизненного цикла. 

31-49 62
Аннотация

При проведении учебных занятий в авиационном вузе целесообразно демонстрировать образцы авиационной техники, отдельные элементы систем и агрегатов или использовать специализированные стенды и плакаты. Однако при изучении современных типов учебных воздушных судов, кабины которых содержат многофункциональные индикаторы, при таком подходе возникают трудности в усвоении учебного материала. При изучении кабин с многофункциональными индикаторами необходимо использовать интерактивные средства обучения, в которых индикаторы должны работать под питанием и иметь необходимый функционал. Обучение на реальной технике в одних случаях является невозможным, а в других нецелесообразным. Использование для обучения комплексного тренажера на учебных занятиях по различным дисциплинам ограничено в силу того, что тренажер предназначен в первую очередь для привития первичных навыков управления воздушным судном, а не для теоретического обучения. В статье рассматривается вопрос повышения качества обучения курсантов-летчиков при изучении порядка работы с арматурой кабины путем использования в учебном процессе вуза интерактивного макета кабины экипажа самолета ДА-42Т со всеми органами управления и индикации (за исключением РУС и педалей), включая два основных многофункциональных индикатора и один резервный. Работа многофункциональных индикаторов реализована в виде специальных устройств, имеющих дисплей и кнопочное обрамление, подключенных к специально разработанной программе на ПК, имитирующей работу информационной системы самолета. Для этого на основе информации из руководства по летной эксплуатации воспроизведены информационные кадры, отображаемые на многофункциональных индикаторах в самолете ДА-42Т. Содержание разработанных кадров полностью повторяет индикацию в самолете ДА-42Т, способствуя повышению качества обучения и выработке практических навыков по работе на комплексном тренажере и в реальном самолете. Физические органы управления в макете кабины также соответствуют по внешнему виду и расположению органам управления в кабине настоящего самолета ДА-42Т. Описан порядок разработки имитаторов многофункциональных индикаторов и макета кабины экипажа самолета ДА-42Т. Описаны возможности использования имитаторов многофункциональных индикаторов и макета кабина самолета ДА-42Т в учебном процессе для повышения качества обучения. Описаны результаты проведенных исследований, представлены преимущества использования интерактивного макета кабины в учебном процессе. 

50-63 48
Аннотация

В статье разработан метод стробирования, который позволяет оценить достоверность данных АЗН-В без необходимости проверки с помощью вторичного радиолокатора или многопозиционной системы наблюдения. Предложены вероятностные модели метода стробирования данных АЗН-В, а также алгоритм применения данных моделей. Проанализированы типовые ситуации, возникающие при определении местоположения воздушного судна с помощью систем АЗН-В, определяемые пороговыми значениями погрешностей навигации и пилотирования. Первая типовая ситуация предполагает невыход погрешностей пилотирования и навигации за пределы допуска, что позволяет сделать вывод о подтверждении достоверности данных АЗН-В. Вторая типовая ситуация предполагает выход погрешности пилотирования за пределы допуска при допустимой погрешности навигации, при этом диспетчер получает сообщение о корректной работе АЗН-В и о необходимости выдачи команды пилоту на корректировку полета. Третья типовая ситуация предполагает выход погрешности навигации за пределы допуска при допустимой или недопустимой погрешности пилотирования; в этом случае диспетчер получает сообщение о том, что достоверность данных АЗН-В не подтверждается и применять эти системы нельзя. Выполнено моделирование этих типовых ситуаций, при этом для реализации метода стробирования данных АЗН-В применялись распределения Рэлея и Райса. Результаты моделирования позволяют оценить требуемое количество накопленных данных АЗН-В для проведения достоверной оценки. Так, было установлено, что при выполнении оценки с применением распределения Рэлея достаточно накопления 15–20 измерений, что при передаче двух сообщений в секунду и при условии штатной работы оборудования АЗН-В потребует 8–10 с. При выполнении оценки с применением распределения Райса достаточно накопления 25–30 измерений, что потребует 13–20 с. Разработанный метод позволит применять системы АЗН-В на региональных аэродромах с низкой интенсивностью полетов как основное или единственное средство наблюдения. 

МАШИНОСТРОЕНИЕ 

64-76 51
Аннотация

Рассматриваются вопросы обеспечения достоверности конечно-элементных моделей (КЭМ) фюзеляжа в зоне выреза под люк на ранних стадиях проектирования летательного аппарата. Сформулированы цель и задачи исследования. Для оценки достоверности математических моделей подобраны объекты, имеющие эталоны. Обсуждаются методы экспериментальных исследований и средства измерений. Приводятся результаты сравнительного анализа численного эксперимента с аналитическими решениями и данными натурных экспериментов. Для валидации КЭМ конструкций определены проверяемые характеристики и типы их проверки. Результаты исследования содержат обсуждение влияния подробности конечно-элементной сетки на коэффициент концентрации напряжений, адекватности моделирования поля напряжений и деформаций в окрестности выреза, учета нелинейности в расчетах на прочность конструкций с концентрацией напряжений. Особое внимание в работе уделено анализу моделирования каркасированной цилиндрической оболочки с большим прямоугольным вырезом, для которой выполнены натурные испытания сотрудниками ЦАГИ. Анализируются деформации силовых шпангоутов, ограничивающих вырез в цилиндрической оболочке, касательные и эквивалентные напряжения в обшивке, нормальные напряжения в стрингерах на пересечении с силовым шпангоутом, смещения сечений шпангоутов в контрольных точках. По результатам исследования сформулированы рекомендации для моделирования тонкостенных конструкций фюзеляжа в зоне большого выреза, обеспечивающие выполнение расчетов с инженерной точностью.

77-92 58
Аннотация

В статье обоснована необходимость создания аналитико-имитационной модели динамики полета истребителя с ограничителем предельных режимов при выполнении маневра «Переворот». Представлена структура аналитико-имитационной модели истребителя, состоящая из совокупности пилотажного стенда, модели динамики полета истребителя, модели астатического ограничителя предельных режимов и модели управляющих действий летчика, основанной на теории нечетких множеств. Представлена структура модели динамики полета истребителя с ограничителем предельных режимов, в состав которой входят система дифференциальных и алгебраических уравнений; модель комплексной системы управления; блока геометрии, массы и центровки; блока расчета аэродинамических сил; блока силовой установки; банка аэродинамических характеристик; блока расчета обратных связей по усилиям с командных рычагов управления. Модель отличается от известных наличием блока имитации переворота, который предназначен для проведения имитационного моделирования переворота и многоитерационного моделирования переворотов с различными начальными условиями для определения основных параметров переворота, кинематических характеристик полета самолета и построения области выполнимости переворота. Блок имитации переворота состоит из функций заданных значений; модели управляющих действий летчика; блока обработки результатов имитационного моделирования; блока определения основных параметров переворота; базы данных эксплуатационных режимов. Функции заданных значений определяют заданные значения кинематических параметров движения самолета, по которым реализовано управление в различных фазовых координатах маневра. Модель позволяет получать достоверные значения кинематических параметров движения истребителя при полунатурном с участием летчика и имитационном с помощью модели управляющих действий летчика моделированиях маневра «Переворот».

93-111 68
Аннотация

В настоящей работе приводится описание математической модели, разработанной для расчета летнотехнических характеристик (ЛТХ) наиболее популярных в настоящее время аэродинамических схем винтокрылых летательных аппаратов (ВКЛА) с электрической (гибридной) силовой установкой для целей городской аэромобильности. Основное внимание в работе уделено рассмотрению аэродинамических схем ВКЛА типа «квадрокоптер» с использованием воздушных винтов открытого типа или винтов в кольце, приводимых во вращение от электродвигателей. Проведен анализ ЛТХ для аэродинамических схем квадрокоптера и конвертопланов-квадрокоптеров с поворотными винтами и поворотным крылом с полностью электрической (ЭСУ) или гибридной (ГСУ) силовой установкой. Для сравнения ЛТХ приводятся результаты расчетов для классического одновинтового вертолета с ЭСУ и ГСУ. На основе численного решения уравнения существования летательного аппарата получены возможные распределения масс элементов конструкции для различных схем электрических (гибридных) ВКЛА. Рассчитаны летно-технические характеристики ВКЛА, включая расчет располагаемой и потребной мощности для диапазона скоростей полета от висения до максимальной скорости и для переходных режимов (для конвертопланов-квадрокоптеров). Рассчитаны дальность и продолжительность полета ВКЛА с полностью электрической и гибридной силовой установкой на режиме горизонтального полета. Выбраны удельные массовые характеристики элементов (аккумуляторов, генераторов, электродвигателей и др.) полностью электрической и гибридной силовой установки для обеспечения приемлемых летнотехнических характеристик ВКЛА. Проведена сравнительная оценка рассматриваемых схем ВКЛА с целью анализа их эффективности. Аэродинамические расчеты производились на основе использования известных аналитических методов импульсной теории несущего винта с возможностью корректировки данных по результатам экспериментов. Полученная в настоящей работе математическая модель может рассматриваться как первое приближение на этапе предварительного выбора конструктивных параметров и аэродинамических схем перспективных электрических (гибридных) ВКЛА, проектируемых для использования в качестве городского аэротакси. 



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.