Preview

Civil Aviation High Technologies

Advanced search

On the solution of weak nonlinear variational problem connected with navier - stokes stationary homogeneous problem

Abstract

Projection iterative process that combines the Bubnov - Galerkin method and iterative process for finding ap-proximations to the solution of weakly nonlinear variational problem associated with a stationary homogeneous Navier - Stokes problem is proposed. At each step of the projection iterative process is proposed to solve linear variational problem. The estimate of the rate of convergence of the projection iterative process is given.

About the Author

A. A. Fonarev
Московский физико-технический институт
Russian Federation


References

1. Ladyzhenskaja O.A. Matematicheskie voprosy dinamiki vjazkoj neszhimaemoj zhidkosti. M.: Nauka. 1970. 288 p. (In Russian).

2. Temam R. Uravnenija Nav'e – Stoksa. Teorija i chislennyj analiz. M.: Mir. 1981. 408 p. (In Russian).

3. Shajdurov V.V. Mnogosetochnye metody konechnyh jelementov. M.: Nauka. 1989. 288 p. (In Russian).

4. Trenogin V.A. Funkcional'nyj analiz. M.: Nauka. 1980. 496 p. (In Russian).

5. Fonarjov A.A. O reshenii kvazilinejnoj variacionnoj zadachi, svjazannoj so stacionarnymi odno-rodnymi uravnenijami Nav'e – Stoksa. Trudy 57-j nauchnoj konferencii MFTI. Upravlenie i prikladnaja matematika. Tom 1. M.: MFTI. 2014. Pp. 35-36. (In Russian).


Review

For citations:


Fonarev A.A. On the solution of weak nonlinear variational problem connected with navier - stokes stationary homogeneous problem. Civil Aviation High Technologies. 2015;(220):95-104. (In Russ.)

Views: 352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)