On the solution of weak nonlinear variational problem connected with navier - stokes stationary homogeneous problem
Abstract
Projection iterative process that combines the Bubnov - Galerkin method and iterative process for finding ap-proximations to the solution of weakly nonlinear variational problem associated with a stationary homogeneous Navier - Stokes problem is proposed. At each step of the projection iterative process is proposed to solve linear variational problem. The estimate of the rate of convergence of the projection iterative process is given.
References
1. Ladyzhenskaja O.A. Matematicheskie voprosy dinamiki vjazkoj neszhimaemoj zhidkosti. M.: Nauka. 1970. 288 p. (In Russian).
2. Temam R. Uravnenija Nav'e – Stoksa. Teorija i chislennyj analiz. M.: Mir. 1981. 408 p. (In Russian).
3. Shajdurov V.V. Mnogosetochnye metody konechnyh jelementov. M.: Nauka. 1989. 288 p. (In Russian).
4. Trenogin V.A. Funkcional'nyj analiz. M.: Nauka. 1980. 496 p. (In Russian).
5. Fonarjov A.A. O reshenii kvazilinejnoj variacionnoj zadachi, svjazannoj so stacionarnymi odno-rodnymi uravnenijami Nav'e – Stoksa. Trudy 57-j nauchnoj konferencii MFTI. Upravlenie i prikladnaja matematika. Tom 1. M.: MFTI. 2014. Pp. 35-36. (In Russian).
Review
For citations:
Fonarev A.A. On the solution of weak nonlinear variational problem connected with navier - stokes stationary homogeneous problem. Civil Aviation High Technologies. 2015;(220):95-104. (In Russ.)