Preview

Научный вестник МГТУ ГА

Расширенный поиск

О РЕДУКЦИЯХ И ИНВАРИАНТНЫХ РЕШЕНИЯХ МОДЕЛИ K-Ε ТУРБУЛЕНТНОСТИ

Аннотация

Методы группового анализа дифференциальных уравнений применяются к модели k - ε турбулентности. Рассмотрены редукции модели k - ε турбулентности по отношению к трехмерной подалгебре симметрий. Получены семейства точных решений

Об авторе

Н. Г. Хорькова
МГТУ им. Н.Э. Баумана
Россия

кандидат физико-математических наук, доцент кафедры «Прикладная математика»,

ninakhorkova@yandex.ru



Список литературы

1. Turbulence, Heat and Mass Transfer 8, Proceedings of the Eight International Symposium On Turbulence, Heat and Mass Transfer, Saraevo, Bosnia and Herzegovina, 15-18 September 2015. 604 p.

2. Garcia-Villalba M., Leschziner M.A., Li N., Rodi W. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. J. Fluid Mech. 2009. Pp. 1-42.

3. Bensow R.E., Fureby C., Liefvendahl M., Persson T. Numerical investigation of the flow over an axisymmetric hill using LES, DES and RANS. Journal of Turbulence. 2006. Vol. 7. Iss. 4. Pp. 1-17.

4. Kalugin V.T., Strijhak S.V. Physical and mathematical modeling of a detachable flow of the probe-device with disk stabilizers in the gas swirling flow. The Scientific Herald MSTUCA. Ser. Aeromechanics and Strength. Moscow. 2008. No. 125. Pp. 63-67. (in Russian).

5. Kalugin V.T., Strijhak S.V. Selection of aerodynamic configuration of a probe streamlined by a turbulent swirling gas flow. 2012. Science and Education. No. 10. Pp. 181-198. DOI: 10.7463/1012.0461853. (in Russian).

6. Kalugin V.T., Chernuha P.A., Chin Ch.H. Experimental and mathematical simulation of fairing aircraft with braking devices. Science and Education. 2012. No. 11. Pp. 217-232. DOI: 10.7463/1112.0489665. (in Russian).

7. Jones W.P., Launder B.E. The prediction of laminarization with a two-equation model of turbulence. Internat. J. Heat Mass Transfer. 1972. Vol. 15. No. 2. Pp. 301-314.

8. Kollmann W. (ed.) Prediction method for turbulent flows. Washington. 1980. 468 p.

9. OpenCFD Limited. OpenFOAM - Programmer’s Guide. 2009. version 1.6.

10. Oberlack M. Symmetries and Invariant Solutions of Turbulent Flows and their Implications for Turbulence Modelling. Theories of Turbulence. International Centre for Mechanical Sciences. 2002. Vol. 442. Pp. 301-366.

11. Oberlack M., Guenther S. Shear-free turbulent diffusion - classical and new scaling laws. Fluid Dynamics Research. 2003. Vol. 33. Pp. 453-476.

12. Efremov I.A., Kaptsov O.V., Chernykh G.G. Self-similar solutions for two problem of free turbulence. Mathematical Modelling. 2009. Vol. 21. No. 12. Pp. 137-144. (in Russian).

13. Kaptsov O.V., Efremov I.A., Schmidt A.V. Self-similar solutions of the second-order model of the far turbulent wake. J. Appl. Mech. Tech. Phys. 2008. Vol. 49. Pp. 217-221.

14. Khor’kova N.G., Verbovetsky A.M. On symmetry subalgebras and conservation laws for k - ε turbulence model and the Navier-Stokes equation. Amer. Math. Soc. Transl. Series 2. 1995. Vol. 167. Pp. 61-90.

15. Vigdorovich I.I. Does the power formula describe turbulent velocity profiles in tubes? Usp. Fiz. Nauk. 2015. Vol. 185. No. 2. Pp. 213-216. (in Russian).

16. Bocharov A.V., Chetverikov V.N., Duzhin S.V., Khor’kova N.G., Krasil’shchik I.S. (ed.), Samokhin A.V., Torkhov Yu.N., Verbovetsky A.M., Vinogradov A.M. (ed.) Symmetries and Conservation Laws for Differential Equation of Mathemetical Phisics. Translations of Mathematical Monographs. Providence, RI: AMS. 1999. Vol. 182. 333 p.

17. Verbovetsky A.M., Khor’kova N.G., Chetverikov V.N. Symmetries of differential equations. Moscow. 2002. 36 p. (in Russian).

18. Khor’kova N.G. Nonlocal aspects of algebraic-geometric theory of differential equations. The Herald MGTU. 2012. Special issue 2. Pp. 205-212. (in Russian).

19. Vitolo R.F. CDE: a Reduce package for computations in the geometry of differential equations, software, user guide and examples. 2015. (freely available at http://gdeq.org)

20. Khor’kova N.G. On exact solutions of the k - ε turbulence model. Scientific Bulletin of MSTUCA. Moscow. 2015. No. 220. Pp. 39-46. (in Russian).


Рецензия

Для цитирования:


Хорькова Н.Г. О РЕДУКЦИЯХ И ИНВАРИАНТНЫХ РЕШЕНИЯХ МОДЕЛИ K-Ε ТУРБУЛЕНТНОСТИ. Научный вестник МГТУ ГА. 2016;(224):70-80.

For citation:


Khor'kova N.G. ON SYMMETRY REDUCTIONS AND INVARIANT SOLUTIONS OF THE k-ε TURBULENCE MODEL. Civil Aviation High Technologies. 2016;(224):70-80.

Просмотров: 492


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)