Preview

Civil Aviation High Technologies

Advanced search

MODULAR HYBRID MEMETIC ALGORITHM FOR FINDING A CONDTIONAL GLOBAL EXTREMUM FOR FUNCTIONS OF SEVERAL VARIABLES

Abstract

This paper presents a hybrid memetic algorithm for finding a conditional global extremum of functions. The algorithm combines such characteristics as modularity and adaptability which provides flexibility and controllability of the algorithm and reduces the influence of parameters. On the basis of the proposed algorithm the software complex is formed in the C# language. The method effectiveness is demonstrated on several well-known model examples of finding a conditional global extremum for functions of several variables.

About the Authors

A. V. Panteleev
Московский авиационный институт (Национальный исследовательский университет)
Russian Federation


V. A. Pismennaya
Московский авиационный институт (Национальный исследовательский университет)
Russian Federation


References

1. Dawkins R. Universal Darwinism in D.S. Bendall (ed.), Evolution: From Molecules to Men. Cambridge: Cambridge University Press, 1983. Pp. 403–425.

2. Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program (report 826). Pasadena, California, USA. 1989.

3. Storn R., Price K. Differential evolution – a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, Kluwer Academic Publishers. Vol. 11. 1997. Pp. 341–359.

4. Panteleev A.V., Dmitrakov I.F. Primenenie metoda differencial'noj ehvolyucii i ego modifikacij v zadache poiska optimal'nogo upravleniya diskretnymi determinirovannymi sistemami (Application of the differential evolution method and its modifications in the problem of finding optimal control of discrete deterministic systems). Scientific Bulletin of MGTU GA. 2011. No. 169 (7). Pp. 5–12. (in Russian).

5. Yang X.-S. Flower Pollination Algorithm for Global Optimization. Unconventional Computation and Natural Computation. 2012. Lecture Notes in Computer Science, Vol. 7445. Pp. 240–249.

6. Chukiat Worasucheep. A Harmony Search with Adaptive Pitch Adjustment for Continuous Optimization. International Journal of Hybrid Information Technology. 2011. Vol. 4. No. 4. Pp. 13–24.

7. Geem Z.W., Kim J.H., Loganathan G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulations. 2001. Vol. 76. Pp. 60–68.

8. Panteleev A.V., Metlitskaya D.V., Aleshina E.A. Metody global'noi optimizatsii. Metaevristicheskie strategii i algoritmy. (Global optimization methods, Metaheuristic strategies and algorithms), Moscow, Vuzovskaya kniga, 2013, 244 p. (in Russian).


Review

For citations:


Panteleev A.V., Pismennaya V.A. MODULAR HYBRID MEMETIC ALGORITHM FOR FINDING A CONDTIONAL GLOBAL EXTREMUM FOR FUNCTIONS OF SEVERAL VARIABLES. Civil Aviation High Technologies. 2016;(224):52-60. (In Russ.)

Views: 516


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)