MODULAR HYBRID MEMETIC ALGORITHM FOR FINDING A CONDTIONAL GLOBAL EXTREMUM FOR FUNCTIONS OF SEVERAL VARIABLES
Abstract
About the Authors
A. V. PanteleevRussian Federation
V. A. Pismennaya
Russian Federation
References
1. Dawkins R. Universal Darwinism in D.S. Bendall (ed.), Evolution: From Molecules to Men. Cambridge: Cambridge University Press, 1983. Pp. 403–425.
2. Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program (report 826). Pasadena, California, USA. 1989.
3. Storn R., Price K. Differential evolution – a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization, Kluwer Academic Publishers. Vol. 11. 1997. Pp. 341–359.
4. Panteleev A.V., Dmitrakov I.F. Primenenie metoda differencial'noj ehvolyucii i ego modifikacij v zadache poiska optimal'nogo upravleniya diskretnymi determinirovannymi sistemami (Application of the differential evolution method and its modifications in the problem of finding optimal control of discrete deterministic systems). Scientific Bulletin of MGTU GA. 2011. No. 169 (7). Pp. 5–12. (in Russian).
5. Yang X.-S. Flower Pollination Algorithm for Global Optimization. Unconventional Computation and Natural Computation. 2012. Lecture Notes in Computer Science, Vol. 7445. Pp. 240–249.
6. Chukiat Worasucheep. A Harmony Search with Adaptive Pitch Adjustment for Continuous Optimization. International Journal of Hybrid Information Technology. 2011. Vol. 4. No. 4. Pp. 13–24.
7. Geem Z.W., Kim J.H., Loganathan G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulations. 2001. Vol. 76. Pp. 60–68.
8. Panteleev A.V., Metlitskaya D.V., Aleshina E.A. Metody global'noi optimizatsii. Metaevristicheskie strategii i algoritmy. (Global optimization methods, Metaheuristic strategies and algorithms), Moscow, Vuzovskaya kniga, 2013, 244 p. (in Russian).
Review
For citations:
Panteleev A.V., Pismennaya V.A. MODULAR HYBRID MEMETIC ALGORITHM FOR FINDING A CONDTIONAL GLOBAL EXTREMUM FOR FUNCTIONS OF SEVERAL VARIABLES. Civil Aviation High Technologies. 2016;(224):52-60. (In Russ.)