On a prolongation construction for local non-divergent vector fields on Rn
Abstract
The problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This construction allows to move from the Euler equations for the ideal incompressible fluid to the Euler equations on finite-dimensional Lie groups.
References
1. Arnol'd V.I., Hesin B.A. Topologicheskie metody v gidrodinamike (Topology Methods in Hydrodynamics). Moscow, MCCME, 2007, 284 p.
2. Lukackij A.M. Strukturno-geometricheskie svojstva beskonechnomernyh grupp Li v primenenii k uravnenijam matematicheskoj fiziki (Geometry structure characteristics of infinite Lie groups in their applications to mathematical physics). Jaroslavl', JarGU, 2010, 142 p.
3. Lukackij A.M. Nauchnyj vestnik MGTU GA, 2005, № 91, 36-47 p.
4. Kartan Je. Izbrannye Trudy (Selected Works), Moscow, MCCME, 1998, 440p.
5. Komrakov B.P. Struktury na mnogoobrazijah i odnorodnye prostranstva (Structures on manifolds and homogeneous spaces). Moscow, Nauka i tehnika, 1978, 210 p.
Review
For citations:
Lukatsky A.M. On a prolongation construction for local non-divergent vector fields on Rn. Civil Aviation High Technologies. 2015;(220):88-94. (In Russ.)