Identification of system models from potential-stream equations on the basis of deep learning on experimental data
https://doi.org/10.26467/2079-0619-2020-23-2-47-58
Abstract
The functioning of various systems (in particular technical objects, living cells, the atmosphere and the ocean, etc.) is determined by the course of physical and physico-chemical processes in them. In order to model physicochemical processes in the general case, the authors previously developed a potential-flow method based on an experimental study (on the results of system tests) of the properties of substances and processes. In the general case, from these experimental data, many possible values of these properties are obtained. Knowing these properties of substances and processes, the initial state of the system, external influences on it (or the set of possible values of these quantities), we can analyze the dynamics of physicochemical processes in this system, and from it the dynamics of the characteristics of this system that have practical meaning. Thus, from the system of equations of this method, a relationship is obtained between the unobservable characteristics of these systems with the observed characteristics of the systems and laboratory systems under consideration (in which the properties of substances and processes in the system under study are experimentally studied). As the potential flow equations describing the physicochemical processes are generally quite complicated for analytical transformations, the aforementioned relationship must be obtained by numerical methods. The present work is devoted to the use of deep learning as a universal approximator for obtaining the described connection between the characteristics of arbitrary systems. These models are trained on the dynamics of the characteristics of the systems under consideration, obtained from potential-flow equations of physicochemical processes in them for different values of the parameters that determine the properties of substances and processes in these systems, their initial states, and external influences.
About the Authors
I. E. StarostinRussian Federation
Igor E. Starostin - Candidate of Technical Sciences, Associate Professor, Electrical Engineering and Aviation Electrical Equipment Chair
S. P. Khalyutin
Russian Federation
Sergey P. Khalyutin - Doctor of Technical Sciences, Professor, Head of the Electrical Engineering and Aviation Electrical Equipment Chair
References
1. Эткин В.А. Энергодинамика: синтез теорий переноса и преобразования энергии. СПб.: Наука, 2008. 409 с.
2. Jou D., Casas-Vazquez J., Lebon G. Extended irreversible thermodynamics. New York, USA: Springer, 2006. 528 p.
3. Старостин И.Е., Быков В.И. Кинетическая теорема современной неравновесной термодинамики. Raleigh, Noth Caroline, USA: Open Science Publishing, 2017. 229 с.
4. Старостин И.Е., Степанкин А.Г. Программная реализация методов современной неравновесной термодинамики. И система симуляции физико-химических процессов Simula-tionNonEqProcSS v.0.1.0. Lambert academic publishing RU, 2019. 132 с.
5. Starostin I.E., Khalyutin S.P. Obtaining robotic objects model from the equations of the potential-flow method // 20th international conference on micro/nanotechnologies and electron devices EDM, Novosibirsk, June 29 - July 3 2019. Pp. 678-684.
6. Старостин И.Е. Методика получения математической модели эксплуатируемого объекта из потенциально-потоковых уравнений физико-химических процессов // Научные горизонты. 2019. № 10 (26). С. 197-206.
7. Flach P. Machine learning. The Art and Science of Algorithms that Make Sense of Data. Cambridge: Cambridge University Press, 2015. 400 p.
8. Shaikh F. Deep Learning vs. Machine Learning - the essential differences you need to know [Электронный ресурс]. Analytics Vidhya. URL: https://ru.esdifferent.com/differences-between-machine-learning-and-deep-learning (дата обращения 22.12.2019).
9. Eykhoff P. Systems identification: parametrs and state estimation. Eindhoven, Netherlands: University of technology, 1974. 555 p.
10. Николенко С., Кадурин А., Архангельская Е. Глубокое обучение. Погружение в мир нейронных сетей. СПб.: Питер, 2018. 480 с.
11. Haykin S. Neural Networks. A Comprehensive Foundation. Upper Saddle River, USA: Prentice hall, 2006. 1105 p.
12. Горева Т.И., Портнягин Н.Н., Пюкке Г.А. Нейросетевые модели диагностики технических систем // Вестник КРАУНЦ. Физ.-мат. науки. 2012. № 1 (4). C. 31-43.
13. Пюкке Г.А., Стрельников Д.С. Применение нейросетевого подхода при построении моделей анализа систем высокой размерности // Вестник Камчатского государственного технического университета. 2013. № 24. С. 21-28.
14. Козлова Л.Е. Разработка и исследование систем замкнутого асинхронного электропривода по схеме ТРН-АД с нейросетевым наблюдателем скорости // Современные проблемы науки и образования. 2013. № 5. С. 44.
15. Гализдра В.И., Бабаев Ш.Б. Нейронные сети и аппроксимация данных // Научные и образовательные проблемы гражданской защиты. 2011. № 3. С. 35-43.
16. Cybenko G.V. Approximation by superpositions of a sigmoidal function // Mathematics of Control Signals and Systems. 1989. Vol. 2, no. 4. Pp. 303-314. DOI: 10.1007/BF02551274
17. Гридин В.Н., Солодовников В.И. Особенности внутреннего представления и визуализации извлекаемой из данных информации с использованием модульной нейронной сети BP-SOM // Новые информационные технологии в автоматизированных системах. 2017. № 20. С.170-175.
18. Горбань А.Н. Обобщенная аппроксимационная теорема и вычислительные возможности нейронных сетей // Сибирский журнал вычислительной математики. 1998. Т. 1, № 1. С. 11-24.
19. Евдокимов И.А., Солодовников В.И. Автоматизация построения нейронной сети в рамках объектно-ориентированного подхода // Новые информационные технологии в автоматизированных системах. 2015. № 18. С. 89-97.
20. Калистратов Т.А. Методы и алгоритмы создания структуры нейронной сети в контексте универсальной аппроксимации функций // Вестник Тамбовского университета. Серия Естественные и технические науки. 2014. Т. 19, № 6. С. 1845-1848.
21. Бондаренко И.Б., Гатчин Ю.А., Гераничев В.Н. Синтез оптимальных искусственных нейронных сетей с помощью модифицированного генетического алгоритма // Научно-технический вестник информационных технологий, механики и оптики. 2012. № 2 (78). С. 51-55.
22. Шумков Е.А., Чистик И.К. Использование генетических алгоритмов для обучения нейронных сетей // Политематический Сетевой Электронный Научный журнал Кубанского государственного аграрного университета. 2013. № 91. С. 455-464.
23. Дивеев А.И. Вариационные методы символьной регрессии для задач управления и идентификации // Идентификация систем и задачи управления: труды X международной конференции, Москва, 26-29 января 2015 г. Институт проблем управления им. В.А. Трапезникова РАН, 2015. С. 141-148.
24. Дивеев А.И. Свойства суперпозиции функций для численных методов символьной регрессии // Cloud of Science. 2016. Т. 3, № 2. С. 290-301.
25. Данг Т.Ф., Дивеев А.И., Софронова Е.А. Решение задач идентификации математических моделей объектов и процессов методом символьной регрессии // Cloud of Science. 2018. Т. 5, № 1. С. 147-162.
26. Дивеев А.И., Ломакова Е.М. Метод бинарного генетического программирования для поиска математического выражения // Вестник Российского университета дружбы народов: серия: инженерные исследования. 2017. Т. 18, № 1. С. 125-134. DOI: 10.22363/2312-8143-2017-18-1-125-134
27. Ильин И.В. Алгоритмы извлечения правил искусственных нейронных сетей // Вестник современных исследований. 2018. № 9.1 (24). С. 149-152.
Review
For citations:
Starostin I.E., Khalyutin S.P. Identification of system models from potential-stream equations on the basis of deep learning on experimental data. Civil Aviation High Technologies. 2020;23(2):47-58. https://doi.org/10.26467/2079-0619-2020-23-2-47-58