Preview

Civil Aviation High Technologies

Advanced search

THE INVERSE-SCATTERING PROBLEM SOLUTION AND SHAPE FROM THE REFLECTED ELECTROMAGNETIC WAVE FIELD STRUCTURE

https://doi.org/10.26467/2079-0619-2018-21-3-160-168

Abstract

The reflected field calculation from the object can be described with the set of point reflectors with the coordinates in electromagnetic wave plane of incidence corresponding to two-dimensional grid nodes with rather small-sized step. At the same time, the single scattering model which does not consider the re-reflection and point elements cross impact is used in the reflected field calculations. The rapid direct and inverse transformation algorithm is used. The numerical solution algorithms of the direct and inverse scattering problems on the object are offered. The method uses the ray representations scattering fields which are based on the Huygens-Fresnel principle. The graphic diagram of the reciprocal object positioning and the observation plane from the reflected electromagnetic field object is represented. The double reflecting Gaussian surface is graphically figured. The figures of the module and the complex amplitude electric field strength of the reflected wave from a double Gaussian surface argument are provided. To shape the surface of the unknown object the recovery shape algorithm is used, by means of reflected wave phase. This algorithm is based on finding the complex matrix elements in dependence on absolute phase, which is proportional to the appropriate point object distance.

About the Authors

A. I. Kozlov
Moscow State Technical University of Civil Aviation, Moscow
Russian Federation
Professor, Doctor of Physical and Mathematical Sciences, Professor of the Chair of Technical Maintenance of Radio Electronic Equipment for Air Transport


V. Yu. Maslov
Moscow Technological University, Moscow,
Russian Federation
Doctor of Technical Sciences, Professor, Professor


References

1. Kozlov, A.I., Logvin, A.I. and Sarychev, V.A. (2007). Polyarizaciya radiovoln. Kn. 2. Radiolokacionnaya polyarimetriya [Polarization of radio waves. Book 2. Radar polarimetry]. Moscow: Radio engineering, 644 р. (in Russian)

2. Kozlov, A.I. and Maslov, V.Yu. (2012). Chislennyj metod reshenija trehmernoj obratnoj zadachi rassejanija jelektromagnitnyh voln na prepjatstvii [Numerical method of the decision of a three-dimensional inverse problem of dissipation of the electromagnetic waves on obstacle]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 179, pp. 135–139. (in Russian)

3. Kozlov, A.I. and Maslov, V.Yu. (2016). Vosstanovlenie formy poverhnosti ob'ekta po poljarizacionnoj strukture polja otrazhennoj volny [Shape restoration of object surface on polarization structure of reflected electromagnetic wave field]. Civil Aviation High Technologies, vol. 19, no. 5, pp. 45–53. (in Russian)

4. Kozlov, A.I. and Maslov, V.Yu. (2012). Chislennyj metod opredelenija neodnorodnoj kompleksnoj dijelektricheskoj pronicaemosti ploskoj poverhnosti ob’ektov po poljarizacionnoj strukture polja otrazhennoj jelektromagnitnoj volny [Numerical method of the determination complex permeability to flat surface object on polarization structure of the field of the reflected electromagnetic wave]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 179, pp. 140–144. (in Russian)

5. Kozlov, A.I. and Maslov, V.Yu. (2014). Distancionnoe opredelenie dijelektricheskoj pronicaemosti poverhnosti v opticheskom diapazone [Remote sensing of dielectric permeability of surface in optical range]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 12(210), pp. 40–42. (in Russian)

6. Kozlov, A.I. and Maslov, V.Yu. (2014). Differencial'nye uravnenija jevoljucii matricy rassejanija [Differential equations to evolutions of scattering matrix]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 1(210), pp. 43–46. (in Russian)

7. Bogorodskii, V.V., Kanareykin, D.B. and Kozlov, A.I. (1981). Poljarizacija rassejannogo i sobstvennogo radioizluchenija zemnyh pokrovov [Polarization of scattered and own radio emission of terrestrial covers]. Leningrad: Gidrometeoizdat, 280 p. (in Russian)

8. Bogorodskii, V.V. and Kozlov, A.I. (1985). Mikrovolnovaja radiometrija zemnyh pokrovov [Microwave radiometry of terrestrial covers]. Leningrad: Gidrometeoizdat, 260 p. (in Russian)

9. Kondratenkov, G.S. and Frolov, A.Ju. (). Radiolokacionnie sistemi distancionnogo zondirovanija Zemli [Radio-wave imaging. Radar systems of Earth’s remote sensing]. Moscow: Radio Engineering, 2005, 368 p. (in Russian)

10. Ostrovitjanov, R.V. and Basalov, F.A. (1982). Statisticheskaja teorija radiolokacii pronjaczennich celej [Statistical theory of extended radar targets]. Moscow: Radio i svjaz [Radio and Communication], 232 p. (in Russian)

11. Verba, V.S. (2014). Aviacionnije kompleksi radiolokacionnogo dozora i navedenija [Aviation complexes of radar patrol and guidance. Principles of design, problems of development and maintenance features]. Moscow: Radio Engineering, 525 р. (in Russian)

12. Horn, R. and Johnson, C. (1989). Matrichnyj analiz [Matrix analysis]. Moscow: Mir, 655 р. (in Russian)


Review

For citations:


Kozlov A.I., Maslov V.Yu. THE INVERSE-SCATTERING PROBLEM SOLUTION AND SHAPE FROM THE REFLECTED ELECTROMAGNETIC WAVE FIELD STRUCTURE. Civil Aviation High Technologies. 2018;21(3):160-168. (In Russ.) https://doi.org/10.26467/2079-0619-2018-21-3-160-168

Views: 716


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)