CALCULATION OF WEIGHT COEFFICIENTS IN CONTINUOUS PARTICLE FILTER
https://doi.org/10.26467/2079-0619-2018-21-2-32-39
Abstract
Keywords
About the Author
K. A. RybakovRussian Federation
Candidate of Physical and Mathematical Sciences, Associate Professor, Mathematics and Cybernetics Department
References
1. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii [Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing]. Vol. 1. St. Petersburg: “CSRI Elektropribor”, 2010. (in Russian)
2. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii [Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing]. Vol. 2. St. Petersburg“CSRI Elektropribor”, 2012. (in Russian)
3. Rybakov K.A. Modifitsirovannyy algoritm optimalnoy filtratsii signalov na osnove modelirovaniya spetsialnogo vetvyashchegosya protsessa [Modified Algorithm for Optimal Signal Filter-ing Based on Modeling Special Branching Process]. Aviakosmicheskoe priborostroenie [Aerospace Instrument-Making], 2013, no. 3, pp. 15–20. (in Russian)
4. Rybakov K.A. Modifitsirovannye statisticheskie algoritmy filtratsii i prognozirovaniya v nepreryvnykh stokhasticheskikh sistemakh [Modified statistical algorithms for filtering and extrapolation in continuous-time stochastic systems]. Izvestiya Instituta matematiki i informatiki UdGU [Proceedings of the Institute of Mathematics and Informatics at Udmurt State University], 2015, no. 2 (46), pp. 155–162. (in Russian)
5. Rybakov K.A. Statisticheskie metody analiza i filtratcii v nepreryvnykh stokhasticheskikh sistemakh [Statistical Methods of Analysis and Filtering for Continuous Stochastic Systems]. Moscow, MAI Publ.house, 2017. (in Russian)
6. Rybakov K.A. Algoritmy prognozirovaniya sostoyaniy v stokhasticheskikh differentsialnykh sistemakh na osnove modelirovaniya spetsialnogo vetvyashchegosya protsessa [Extrapolation algorithms for stochastic differential systems based on modeling special branching process.] Differentsialnye uravneniya i protsessy upravleniya [Differential Equations and Control Processes.] 2015, no. 1, pp. 25–38. (in Russian)
7. Bain A., Crisan D. Fundamentals of Stochastic Filtering. Springer, 2009.
8. Del Moral P. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, 2004.
9. Mikhailov G.A., Voitishek A.V. Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo [Numerical Statistical Modeling. Monte-Carlo Methods]. Moscow: “Akademiya” Publ.centre, 2006. (in Russian)
10. Mikhailov G.A., Averina T.A. Statistical modeling of inhomogeneous random functions on the basis of Poisson point fields. Doklady Mathematics, RAS Reports, 2010, vol. 434, no. 1, pp. 29–32.
11. Davis M.H.A. A pathwise solution of the equations of nonlinear filtering. Theory of Probability and its Applications, 1982, vol. 27, no. 1, pp. 167–175.
12. Crisan D. Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation. The Annals of Probability, 2003, vol. 31, no. 2, pp. 693–718.
13. Panteleev A.V., Yakimova A.S., Rybakov K.A. Obyknovennye differentsialnye uravneniya. Praktikum [Ordinary Differential Equations. Practical Work]. Moscow: INFRA-M, 2016 (in Russian)
14. Zaritskii V.S., Svetnik V.B., Shimelevich L.I. Monte-Carlo technique in problems of optimal information rocessing. Automation and Remote Control, 1975, vol. 36, no. 12, pp. 2015–2022.
Review
For citations:
Rybakov K.A. CALCULATION OF WEIGHT COEFFICIENTS IN CONTINUOUS PARTICLE FILTER. Civil Aviation High Technologies. 2018;21(2):32-39. (In Russ.) https://doi.org/10.26467/2079-0619-2018-21-2-32-39