Preview

Civil Aviation High Technologies

Advanced search

VORTEX ELEMENT METHOD SIMULATION OF KNOTTED VORTEX FILAMENTS EVOLUTION

Abstract

Research paper is devoted to the description of a new modification of the algorithm for calculating the vortex filaments motion. The results of methodological studies showing that this algorithm can correctly simulate the elongation, shortening, bending and reconnection of vortex filaments, as well as known qualitative phenomena arising from the vortex rings interaction are given. Particular attention is paid to the repetition of the calculation recently investigated experimentally the evolution of bound vortices. It is shown that with the developed algorithm can be steadily modeled complex vortex loops evolution. The main advantage of the new algorithm is stability and high-speed computing.

About the Authors

S. A. Dergachev
МГТУ им. Н.Э. Баумана
Russian Federation


G. A. Shcheglov
МГТУ им. Н.Э. Баумана
Russian Federation


References

1. Trekhmernoe otrihvnoe obtekanie tel proizvoljnoyj formih. pod red. S.M. Belocerkovskogo. M.: CAGI. 2000. 265 p. (In Russian).

2. Cottet G.-H., Koumoutsakos P. Vortex Methods: Theory and Practice. Cambridge: Cambridge University Press. 2000. 320 p.

3. Belocerkovskiyj S.M., Ginevskiyj A.S. Modelirovanie turbulentnihkh struyj i sledov na osnove metoda diskretnihkh vikhreyj. M.: Fizmatlit. 1995. 367 p. (In Russian).

4. Andronov P.R., Guvernyuk S.V., Dihnnikova G.Ya. Vikhrevihe metodih rascheta nestacionarnihkh gidrodinamicheskikh nagruzok. M.: MGU. 2006. 184 p. (In Russian).

5. Kida S., Takaoka M. Vortex Reconnection. Annual Review of Fluid Mechanics. 1994. Vol. 26. Pp. 169 -177.

6. Sreenivasan K.R. Vortex reconnection classical and superfluid turbulence compared and contrasted. Proc. of Fluid-Gravity Correspondence Arnold Sommerfeld Centre, LMU, Munich 4 September 2009. URL: https://www.theorie.physik.uni-muenchen.de/activities/workshops/archive_09/200909_2-7/talks/sreenivasan.pdf

7. Hussain F., DuraisamyK. Mechanics of viscous vortex reconnection. Physics of Fluids. 2011. Vol. 23(2):021701.

8. Van Rees W.M., Hussain F., Koumoutsakos P. Vortex tube reconnection at Re=104. Physics of Fluids. 2012. Vol. 24(7): 075105.

9. Leonard A. Vortex Methods for Flow Simulation. Jour. Comput. Phys. 1980. № 37. Pp. 289-335.

10. Chorin A.J. Hairpin removal in vortex interactions II. Jour. of Comput. Phys. 1993. № 107. Pp. 1-9.

11. Bogomolov D.V., Marchevskiyj I.K., Setukha A.V., Theglov G.A. Chislennoe modelirovanie dvizhenija pary vihrevyh kolec v ideal'noj zhidkosti metodami diskretnyh vihrevyh jelementov. Inzhenernaia fizika. 2008. № 4. Pp.8-14. (In Russian).

12. Kleckner D., Irvine W.T.M. Creation and dynamics of knotted vortices. Nature Physics. 2013. № 9. Pp. 253-258.

13. Winckelmans G.S., Leonard A. Contributions to Vortex Particle Methods for the Computation of ThreeDimensional Incompressible Unsteady Flows. Journal of Computational Physics. 1993. № 109. Pp. 247-273.

14. Weibmann S., Pinkall U., Filament-based smoke with vortex shedding and variational reconnection. ACM Transactions on Graphics. 2010. Vol. 29. № 4. Article 115.

15. Alkemade. A.J.Q. On Vortex Atoms and Vortons. PhD Thesis. Delft. (The Netherlands). 1994. 209 p.

16. Marchevskiyj I.K., Theglov G.A. Chislennoe modelirovanie jevoljucii vihrevyh kolec v ideal'noj zhidkosti. Neobratimihe processih v prirode i tekhnike: Trudih Shestoyj Vserossiyjskoyj konferencii. M.: MGTU im. N.Eh. Baumana. 2011. Ch.II. Pp. 98-101. (In Russian).

17. Kleckner D., Irvine W.T.M. Supplementary videos from the paper "Creation and dynamics of knotted vortices". URL: http://www.youtube.com/watch?v=rcnw8NeJqjU.


Review

For citations:


Dergachev S.A., Shcheglov G.A. VORTEX ELEMENT METHOD SIMULATION OF KNOTTED VORTEX FILAMENTS EVOLUTION. Civil Aviation High Technologies. 2015;(212):18-25. (In Russ.)

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)