MODELLING SOLUTIONS TO THE KdV-BURGERS EQUATION IN THE CASE OF NONHOMOGENEOUS DISSIPATIVE MEDIA
Abstract
About the Authors
A. V. SamokhinRussian Federation
Doctor of Engineering Sciences, Professor of Higher Mathematics Chair,
Moscow
Y. I. Dementyev
Russian Federation
PhD in Physical and Mathematical Sciences, Head of Higher Mathematics Chair,
Moscow
References
1. Ryskin N.M., Trubetskov D.I. Nelineiniye volny [Nonlinear waves]. M., Fizmatlit, 2000, 272 p. (in Russian)
2. Samokhin A.V., Dementyev Y.I. Resheniya uravneniya Burgersa s periodicheskim vozmuscshtniyem na granitse [Solutions to the Burgers equation with a periodic perturbation on the boundary]. Civil aviation high technologies, 2015, no. 220, pp. 82–87. (in Russian)
3. Dubrovin B., Elaeva M. On critical behavior in nonlinear evolutionary PDEs with small viscosity. ArXiv: 1301.7216v1math-ph., 30.01.2013, 16 p.
4. Dementyev Y.I., Samokhin A.V. Galilyeyevo-invariantniye resheniya uravneniya Burgersa i nelineinaya superpostsiya udarnyh voln [Galilean-invariant solutions to the Burgers equation and the nonlinear superposition of shock waves]. Nauchnyi Vestnik moskovskogo gosudarstvennogo tehnicheskogo universiyeya grazhdanskoi aviatsii [Civil aviation high technologies], 2016, no. 224, pp. 24–33. (in Russian)
5. Chugainova A.P., Shargatov V.A. Stability of the breaks structure described by the generalized Kortweg-de Vries-Burgers equation, Computational Math and Math Phys., 2016, vol. 56, issue 2, pp. 259–274.
6. Dubrovin B. On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour, Comm. Math. Phys., 2006, vol. 267, pp. 117–139.
7. Rudenko O.V. Nelineinye piloobraznye volny [Nonlinear sawtooth-shaped waves]. UFN, 1995, no. 9, pp. 1011–1035. (in Russian)
8. Chugainova A.P. Nestatsionarnyje reshenija obobshschonnogo uravnenija Kortewega-de Vriesa-Burgersa [Non-stationary solutions of a generalized Korteweg-de Vries-Burgers equation]. Trudy MIAN [Proceedings of MIAS], 2013, vol. 281, pp. 215–223.
9. Chugainova A.P., Shargatov V.A. Ustoichivost nestatsionarnyh reshenii obobshschonnogo uravnenija Kortewega-de Vriesa-Burgersa [Stability of non-stationary solutions of a generalized Korteweg-de Vries-Burgers equation]. J. Vychisl. Matem i Matem. Physiki [Comp. Math. and Math. Physics]. 2015, vol. 55, № 2, pp. 253–266. (in Russian)
10. Kulikovsky A.G. O poverkhnostyakh razryva razdelyaushschikh idealnyje sredy s razlichnymi svoistvami: Volny rekombinatsii [On break surfaces separating ideal media with different properties: Recombination waves]. Prikladnaya Matematika i Mehanika [Applied Mathematics and Mechanics], 1968, vol. 32, issue 6, pp. 1125–1131. (in Russian)
11. Pego R.L., Smereka P., Weinstein M.I. Oscillatory instability of traveling waves for a KdV-Burgers equation. Physica D. 1993, vol. 67, pp. 45–65.
Review
For citations:
Samokhin A.V., Dementyev Y.I. MODELLING SOLUTIONS TO THE KdV-BURGERS EQUATION IN THE CASE OF NONHOMOGENEOUS DISSIPATIVE MEDIA. Civil Aviation High Technologies. 2017;20(2):100-108. (In Russ.)