MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE
Abstract
About the Author
S. V. StrijhakRussian Federation
PhD, Engineer,
Moscow
References
1. Rosatom do 2020 goda postroit vetroparki moshnostiyu 612 Mvt yf yuge Rossii 22 iulya, 2016 [Rosatom will have built to 2020 windparks with capacity of 612 MW in the South of Russia: 22 July 2016]. Available at: http://kuban.rbc.ru/krasnodar/freenews/5792012f9a79473230837559?from=newsfeed. (Accessed: 27.10.2016). (in Russian)
2. Naumov I.V., Rahmanov V.V., Okulov V.L., Velte K.M, Meyer K.E, Mikkelsen R.F. Diagnostic of flow behind the model of windmill turbine. Thermophysics and aeromechanics. 2012, vol. 19, no. 3, pp. 267–278.
3. Okulov V.L., Naumov I.V., Mikkelsen R.F., Kabardin I.K., Sorensen J.N. A regular Strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. (2014). Vol. 747, pp. 369–380.
4. Krogstad P.A., Lund J.A. An experimental and numerical study of the performance of a model turbine. Wind Energ, 2012, 15, pp. 443–457.
5. Okulov V.L., Sørensen, J.N, van Киik G.A.M. Razvitie teorii optimalnogo rotora [The development of the optimal rotor theory]. K 100-letiu vichrevoi teorii grebnogo vinta professora N.E. Zhukovskogo [On the 100th anniversary of the vortex theory of screw propeller professor N.E. Zhukovsky.] M. – Izhevsk: NITS "Regulyarnaya i chaoticheskya dinamika". 2013. 120 p. (in Russian)
6. Sorensen, J.N., Shen, W.Z. Numerical Modeling of Wind Turbine Wakes, Journal of Fluids Engineering 124, 2002, pp. 393–399.
7. Churchfield M.J., Moriarty P.J., Vijayakumar G., Brasseur J.G. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM. Conference Paper NREL/CP-500-48905 August 2010. pp.1 – 26.
8. Calaf M., Meneveau C., Meyers J. Large eddy simulations of fully developed wind-turbine array boundary layers, Phys. Fluids 22. 015110 (2010).
9. Churchfield M.J., Lee S., Michalakes J., Moriarty P.J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulence, vol. 13, no. 14. 2012, pp. 1–32.
10. Munters M., Meneveau C., Meyers J. Turbulent Inflow Precursor Method with TimeVarying Direction for Large-Eddy Simulations and Applications to Wind Farms. Boundary-Layer Meteorol. 2016. DOI 10.1007/s10546-016-0127-z
11. Sagaut P. Large eddy simulation for incompressible flows: an introduction. Springer. Berlin. 2002. 426 p.
12. Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin et al.: Springer. 2002. 423 p.
13. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object oriented techniques. Computers in Physics. 1998, vol. 12, no. 6, pp. 620–631.
14. Meneveau C., Lund T.S., Cabot W.H. A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid. Mech 1996. 319. pp. 353–385.
Review
For citations:
Strijhak S.V. MATHEMATICAL MODELING OF FLOW PARAMETERS FOR SINGLE WIND TURBINE. Civil Aviation High Technologies. 2016;19(6):176-184. (In Russ.)