Preview

Civil Aviation High Technologies

Advanced search

METHODOLOGY AND RESULTS OF THE MAIN TECHNICAL OF PARAMETERS OF THE MANEUVERABLE UNMANNED AERIAL VEHICLE JUSTIFICATION

Abstract

The recent experience of creating an unmanned combat aerial vehicle indicates that the main problems do not concern the development of an unmanned fighter as an aerial vehicle. The greatest challenge lies in creating the algorithms, data sensors, control hardware, communications hardware, etc. necessary for utilization of an unmanned aerial vehicle (UAV). In this context it is important to highlight the problem of replacing the pilot as a sensor and a flight operator on board of the UAV. This problem can be partially solved by introducing remote control, but there are some flight stages where it can only be executed under a fully independent control and data support due to various reasons, such as tight time, short duration, lack of robust communication, etc. These stages include combat deployment (surface attack or air attack) which make the highest demands on the fighter's design, that is why the promising UAV are currently considered to be "as autonomous as possible". It is obvious that the efficiency of an autonomous UAV will be determined mostly by the effectiveness of its automated control algorithms, and this dependence will increase together with the level of UAV autonomy. On the other hand, the optimal control algorithms can only be synthesized based on the control object characteristics. It means the development of UAV external design and the synthesis of its control algorithms should occur simultaneously and interdependently. This article presents the content and gives an example of the use of the method of maneuverable UAV external design, the distinctive feature of which lies in the interdependent processes of UAV external design developing and the synthesizing of its automated control algorithms.

About the Author

M. A. Kiselev
State Research Institute of Aviation Systems
Russian Federation
Moscow


References

1. Barkovskiy V.I., Skopets G.M., Stepanov V.D. Metodologiya formirovaniya tekhnicheskogo oblika eksportno oriyentirovannykh aviatsionnykh kompleksov [Formation methodology of export-oriented aviation complexes technical configuration]. Ed. V.I. Barkovskiy. Moscow. FIZMATLIT. 2008. (in Russian)

2. Gulyayev V.V., Demchenko O.F., Dolzhenkov N.N. etc. Matematicheskoye modelirovaniye pri formirovanii oblika letatel'nogo apparata [Mathematical modeling of the aircraft technical configuration formation]. Ed. V.A. Podobedov. Moscow. Mashinostroyeniye, Mashinostroyeniye-Polet. 2005. (in Russian)

3. Levitskii S.V. Metodika optimizatsii tekhnicheskikh kharakteristik gipoteticheskogo manevrennogo istrebitelya [Methods for optimization of technical characteristics of hypothetical maneuverable fighter]. Izvestiya RAN. Teoriya i sistemy upravleniya [News of RAS. Theory and control systems], 2001, no. 6, pp. 91–101.

4. Levitskii S.V. Optimizatsiya obliko formiruyushchikh parametrov bespilotnogo samoletaistrebitelya [Optimization of appearance-forming parameters for unmanned fighter plane]. Naukoyemkiye tekhnologii. [High Tech], 2008, vol. 9. no. 3, pp. 16–26.

5. Usikov A.V., Burutin G.A., Gavrilov V.A., Tashlykov S.L. Voyennoye iskusstvo v lokal'nykh voynakh i vooruzhennykh konfliktakh. Vtoraya polovina XX – nachalo XXI veka [Military art in local wars and armed conflicts. The second half of XX – beginning of XXI century. Ed. A.S. Rukshin]. Moscow. Voyennoye izdatel'stvo [Military Publishing House]. 2008. 765 p. (in Russian)

6. Levitskii S.V., Matveev A.I., Sandler G.A. Optimizatsiya strategii funktsionirovaniya samoletov-istrebiteley v vozdushnom boyu [Optimizing the strategy of functioning of a fighter aircraft in air combat]. Izvestiya RAN. Teoriya i sistemy upravleniya [News of RAS. Theory and control systems], 2003, no. 3, pp. 103–113.

7. Fedunov B.E. Bortovye intellektual'nye sistemy sistemoobrazuyushchego yadra sovremennykh samoletov [Airborne Intellectual Systems of Systemgenerator Nucleus of Modem Aircrafts]. Mekhatronika, avtomatizatsiya, upravleniye [Mechatronics, Automation, Control], 2006, no. 1, pp. 24–29.

8. Kiselev M.A. Upravlenie dvukhstupenchatoi` dinamicheskoi` sistemoi` pri reshenii zadachi vstrechi s podvizhny’m ob``ektom [Control over two-stage dynamic system in the course of collision with a moving objec]. Nauchnyy Vestnik MGTU GA [Scientific Bulletin of MSTUCA], 2013, no. 192, pp. 105–113.

9. Kiselev M.A., Kostin A.M., Tyumenev V.R. O vliyanii nachal'nykh i konechnykh usloviy na optimal'nye parametry razvorota, vypolnyayemogo s maksimal'noy uglovoy skorost'yu [About Influence Of Initial And Final Conditions on Optimum Parameters of the Turn Which Is Carried Out With the Maximal Angular Speed]. Nauchnyy Vestnik MGTU GA. Ser. Aeromekhanika i prochnost' [Scientific Bulletin of MSTUCA], 2008, no. 125, pp. 130–138.

10. Kiselev M.A. Algoritm avtomatizatcii razvorota samoleta, vy`polniaemogo s maksimal`noi uglovoi skorost`iu [An algorithm of an aircraft turn executed with maximum angular velocity]. Izvestiya RAN. Teoriya i sistemy upravleniya [News of RAS. Theory and control systems], 2007, no. 5, pp. 150–160.

11. Kiselev M.A., Kostin A.M., Tyumenev V.R. K optimizatcii upravleniya traektorny`m dvizheniem samoleta [То optimization of trajectory movement management of the plane]. Nauchnyy Vestnik MGTU GA. Ser. Aeromekhanika i prochnost' [Scientific Bulletin of MSTUCA], 2008, no. 125, pp. 138–145.


Review

For citations:


Kiselev M.A. METHODOLOGY AND RESULTS OF THE MAIN TECHNICAL OF PARAMETERS OF THE MANEUVERABLE UNMANNED AERIAL VEHICLE JUSTIFICATION. Civil Aviation High Technologies. 2016;19(6):156-165. (In Russ.)

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)