Пилообразные решения уравнения Бюргерса на интервале
Аннотация
Список литературы
1. Dubrovin B., Elaeva M. On critical behavior in nonlinear evolutionary PDEs with small viscosity// ArXiv: 1301.7216v1math-ph., 30.01.2013, 16 p.
2. Dubrovin B., Grava T. and Clein C. Numerical study of breakup in generalized Korteweg de Vries and Kawahara equations// Siam J. Appl. Math, 71: 4 (2011), p. 983-1008.
3. Dubrovin B. On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour// Comm. Math. Phys., 267(2006), p. 117-139.
4. Parker D.F. The decay of sawtooth solutions to the Burgers equation// Proc. R. Soc. of Lond., 369 A (1980), p. 409-424.
5. Rudenko O.V. Nonlinear sawtooth-shaped waves// UFN:9 (1995), p. 1011-1035 (in Russian).
6. Samokhin A.V. and Dementyev Y.I. Symmetries of a boundary-value problem on an interval// Proc. of the Int. Geometry Center, Odessa: ONAFT, 2 (2009), p. 55-80 (in Russian).
7. Samokhin A.V. Evolution of initial data for Burgers equation with fixed boundary values// Sci. HeraldofMSTUCA, 194 (2013), p. 63-70 (in Russian).
Для цитирования:
Самохин А.В., Дементьев Ю.И. Пилообразные решения уравнения Бюргерса на интервале. Научный вестник МГТУ ГА. 2014;(204):135-142.
For citation:
Samokhin A.V., Dementyev Y.I. SAWTOOTH SOLUTIONS TO THE BURGERS EQUATION ON AN INTERVAL. Civil Aviation High Technologies. 2014;(204):135-142. (In Russ.)