Grid influence issues in the methodology of numerical modelling of non-stationary combustion processes
https://doi.org/10.26467/2079-0619-2025-28-1-53-66
Abstract
Estimation of reserves of combustion process stability in gas turbine engine (GTE CC) based on artificial modeling of non-stationary process (NP) excitation in the combustion chambers in temperature-pressure parameters is an actual problem in engine engineering. An increasing number of aircraft require the use of engines with high gas dynamic stability (GDS) up to 30% and more, for example, when creating power plants for vertical and short take-off and landing aircrafts, ekranoplans (ground-effect vehicles) and etc. The use of computational fluid dynamics (CFD) tools for calculating combustion flows in the combustion chamber of a gas turbine engine is currently an integral part of the design process, since a numerical study, in contrast to a full-scale experiment, requires significantly fewer material resources providing the ability to model expensive and unsafe cases of aircraft flight operation that are difficult to implement at the stage of bench tests, such as: crossing a jet distrail or a shock wave front (e.g., when an ammunition detonates) in front of the air intake of an air-jet engine, critical crosswind during takeoff leading to flow separation on the air intake cowl, vertical gusts and atmospheric turbulence, flight at high angles of attack, aircraft evolution (slip, etc.). The results of numerical simulation are decisively determined by the limitations of the applied models and simplifying assumptions for the simulated flow. There are many sources of errors in any calculation using computational gas dynamics methods: accumulated calculation errors, sensitivity to grid size, discretisation, flow extrapolation in grid interfaces of the used solver (ANSYS.Fluent), errors of turbulence models, assumptions and simplifications applied to the design, etc. This paper considers the grid effect on the problem of proving the random nature of gas oscillations in the combustion chamber of a gas turbine engine, which is essential for determining the gas dynamic stability of the engine as a whole.
About the Authors
A. T. SavchukRussian Federation
Andrey T. Savchuk, Сandidate for a Scientific Degree of the Aircraft Engines Chair
Moscow
L. V. Moskalenko
Russian Federation
Lada V. Moskalenko, Candidate of Technical Sciences, Associate Professor, Aircraft Engines Chair
Moscow
References
1. Savchuk, A.T., Yakovlev, A.A. (2021). Method of the numerical modelling of unstationary processes in the combustion chamber of a gas turbine engine. Journal of Physics Conference Series, vol. 1925. ID: 012009. DOI: 10.1088/1742-6596/1925/1/012009 (accessed: 25.08.2024).
2. Le Sausse, P., Fabrie, P., Arnou, D., Clunet, F. (2013). CFD comparison with centrifugal compressor measurements on a wide operating range. In: EPJ Web of Conferences, vol. 45. ID: 01059. DOI: 10.1051/epjconf/20134501059 (accessed: 25.08.2024).
3. Savchuk, A.T., Yakovlev, A.A. (2020). Numerical modelling of unstationary processes in the combustion chamber of a gas turbine engine. In: XIII Mezhdunarodnaya konferentsiya po prikladnoy matematike i mekhanike v aerokosmicheskoy otrasli (AMMAI'2020): materialy konferentsii. Moscow: MAI, pp. 101–103. (in Russian)
4. Savchuk, A.T., Yakovlev, A.A. (2021). On the issues of numerical modeling of unsteady processes in the combustion chamber of a gas turbine engine. In: XXII Mezhdunarodnaya konferentsiya po vychislitel'noy mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS'2021): materialy konferentsii. Moscow: MAI, pp. 624–626. (in Russian)
5. Mangani, L., Casartelli, E., Mauri, S. (2012). Assessment of various turbulence models in a high pressure ratio centrifugal compressor with an object oriented CFD code. Journal of Turbomachinery, vol. 134, no. 6. ID: 061033. DOI: 10.1115/1.4006310 (accessed: 25.08.2024).
6. Pecnik, P., Pieringer, P., Sanz, W. (2005). Numerical investigation of the secondary flow of a transonic turbine stage using various turbulence closures. In: Proceedings of the ASME Turbo Expo 2005, vol. 6, pp. 1185–1193. DOI: 10.1115/GT2005-68754.
7. Trébinjac, I., Kulisa, P., Bulot, N., Rochuon, N. (2009). Effect of unsteadiness on the performance of a transonic centrifugal compressor stage. Journal of Turbomachinery, vol. 131, no. 4. ID: 041011. DOI: 10.1115/1.3070575 (accessed: 25.08.2024).
8. Ibaraki, S., Matsuo, T., Kuma, H., Sumida, K., Suita, T. (2002). Aerodynamics of a transonic centrifugal compressor impeller. ASME Turbo Expo 2002: Power for Land, Sea, and Air, vol. 5, pp. 473–480. DOI: 10.1115/gt2002-30374
9. Danilishin, A.M., Kozhukhov, Y.V., Neverov, V.V., Malev, K.G., Mironov, Y.R. (2017). The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station. In: AIP Conference Proceedings, vol. 1876. ID: 020046. DOI: 10.1063/1.4998866 (accessed: 25.08.2024).
10. Elfert, M., Weber, A., Wittrock, D., Peters, A., Voss, C., Nicke, E. (2017). Experimental and numerical verification of an optimization of a fast rotating high-performance radial compressor impeller. Journal of Turbomachinery, vol. 139, no. 10. ID: 101007 DOI: 10.1115/1.4036357 (accessed: 25.08.2024).
11. Zandsalimy, M., Ollivier Gooch, C.F. (2024). Mesh optimization for improved computational fluid dynamics numerical stability and convergence rate. In: AIAA Aviation Forum and Ascend 2024. DOI: 10.2514/6.2024-3615 (accessed: 25.08.2024).
12. Zandsalimy, M., Ollivier-Gooch, C. (2022). A novel approach to mesh optimization to stabilize unstructured finite volume simulations. Journal of Computational Physics, vol. 453. ID: 110959. DOI: 10.1016/j.jcp.2022.110959 (accessed: 25.08.2024).
13. Sharbatdar, M., Ollivier Gooch, C.F. (2013). Eigenanalysis of truncation and discretization error on unstructured meshes. In: 21st AIAA Computational Fluid Dynamics Conference, ID: 3089, 25 p. DOI: 10.2514/6.2013-3089 (accessed: 25.08.2024).
14. Chen, L. (2016). Stability analysis and stabilization of unstructured finite volume method. A thesis Master of Applied Science. University of British Columbia, 122 p. DOI: 10.14288/1.0300002 (accessed: 25.08.2024).
15. Lee, C.-M., Kundu, K. (2013). Simplified Jet-A kinetic mechanism for combustor application. NASA Technical Memorandum 105940 AIAA-93-0021, 13 p. Available at: https://ntrs.nasa.gov/api/citations/19930006315/downloads/19930006315.pdf (accessed: 25.08.2024).
16. Pugachev, P.V., Svoboda, D.G., Zharkovsky, A.A. (2016). Calculation and design of blade hydraulic machines. Calculation of viscous flow in blade hydraulic machines using the ANSYS CFX: tutorial. St. Petersburg: SPbPU, 120 p. (in Russian)
Review
For citations:
Savchuk A.T., Moskalenko L.V. Grid influence issues in the methodology of numerical modelling of non-stationary combustion processes. Civil Aviation High Technologies. 2025;28(1):53-66. https://doi.org/10.26467/2079-0619-2025-28-1-53-66