Preview

Civil Aviation High Technologies

Advanced search

VORTEX ELEMENT METHOD SIMULATION OF FLOW AROUND BODIES USING CLOSED VORTEX LOOPS

Abstract

New modification of the vortex element method which uses closed vortex loop to calculate the incompressible 3D-flow around bodies by flow of an incompressible medium and determining the unsteady hydrodynamic loads is considered. An original algorithm for closed loops generation on the surface of the body simulation and their evolution in the stream is proposed. The results of algorithm tests is discussed. The model problems of the flow around sphere and cylinder is investigated. It is shown that the results obtained in the pressure distribution on the body surface calculation are in good agreement with the experimental data.

About the Authors

S. A. Dergachev
МГТУ им. Н.Э. Баумана
Russian Federation


G. A. Shcheglov
МГТУ им. Н.Э. Баумана
Russian Federation


References

1. Trekhmernoe otrihvnoe obtekanie tel proizvoljnoyj formih [Three-dimensional separated flow around bodies of arbitrary shape] / Pod red. S.M. Belocerkovskogo. – Moscow, CAGI, 2000. – 265 p. (In Russian)

2. Murua J., Palacios R., Graham J.M.R. Assessment of Wake-Tail Interference Effects on the Dynamics of Flexible Aircraft. AIAA Journal 50:7 (2012), 1575 – 1585.

3. Alkemade A.J.Q. On Vortex Atoms and Vortons: PhD Thesis. – Delft, (The Netherlands), 1994. – 209 p.

4. Marchevsky I.K., Scheglov G.A. Symmetrical Vortex Fragmenton as a Vortex Element for Incompressible 3D Flow Simulation // The Sixth International Conference on Computational Fluid Dynamics: Book of Abstracts. - St.Petersburg, 2010. – PP. 328 – 329.

5. Kamemoto K. On Contribution of Advanced Vortex Element Methods Toward Virtual Reality of Unsteady Vortical Flows in the New Generation of CFD // Journal of the Brazilian Society of Mechanical Sciences and Engineering. – 2004. – V. XXVI, No. 4. – PP. 368 – 378.

6. Aparinov A.A., Setukha A.V. Application of mosaic-skeleton approximations in the simulation of three-dimensional vortex flows by vortex segments // Computational Mathematics and Mathematical Physics. 2010. V. 50. No 5. PP. 890 – 899.

7. Willis D.J., Peraire J., White J.K. A combined pFFT‐ multipole tree code, unsteady panel method with vortex particle wakes // International Journal for numerical methods in fluids 53 (8), 1399 – 1422, 2007.

8. Weißmann S., Pinkall U. Filament-based smoke with vortex shedding and variational reconnection // ACM Trans. Graph. 29, 4, Article 115 (July 2010), 12 p.

9. Dergachev S.A., Shcheglov G.A. Modelirovanie ehvolyucii perepletennihkh vikhrevihkh niteyj metodom vikhrevihkh ehlementov [Simulation of the evolution of the vortex filaments interlaced Eddy elements. Scientific Bulletin MSTUCA] Moscow. Nauchnyj vestnik MGTU GA, 2015, № 212 (2), PP. 18 – 25. (In Russian)

10. Andronov P.R., Guvernyuk S.V., Dihnnikova G.Ya. Vikhrevihe metodih rascheta nestacionarnihkh gidrodinamicheskikh nagruzok. [Vortex methods for unsteady hydrodynamical loads] Moscow, MGU. 2006. 184 p. (In Russian)

11. Uhlman J.S. An Integral Equation Formulation of the Equation of Motion of an Incompressible Fluid: Technical Report / Naval Undersea Warfare Center, 1996. – No. 10, 086. – 30 p.

12. Lighthill M.J. Introduction. Boundary Layer Theory // Laminar Boundary Layers / Edited by J. Rosenhead. – New-York: Oxford University Press, 1963. – PP. 54 – 61.

13. Accuracy Considerations for Implementing Velocity Boundary Conditions in Vorticity Formulations / S.N. Kempka [and others] // Sandia Report. – 1996. – SAND96-0583 UC-700. – 52 p.

14. Dijkstra E.W. A note on two problems in connexion with graphs // Numerische Mathematik. V.1 (1959), PP. 269 – 271.

15. Flachsbart O. Der Widerstand von Kugeln in der Umgebung der kritischen Reynoldschen Zahl // Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen. IV. Lieferung. 1932, PP. 106 – 108.

16. Parkinson G.V., Jandali T. Modelj sleda s istochnikami za plokhoobtekaemihm telom v potencialjnom potoke [A wake source model for bluff body potential flow. Collection of transfers: Mechanics] Sb. perevodov: Mekhanika, vihp.2. – Moscow, Mir, 1971. – PP. 86 – 102. (In Russian)


Review

For citations:


Dergachev S.A., Shcheglov G.A. VORTEX ELEMENT METHOD SIMULATION OF FLOW AROUND BODIES USING CLOSED VORTEX LOOPS. Civil Aviation High Technologies. 2016;(223):19-27. (In Russ.)

Views: 494


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)