Preview

Civil Aviation High Technologies

Advanced search

Key wireless communication technologies to support traffic management systems of unmanned aerial vehicles for civil application (review of foreign literature)

https://doi.org/10.26467/2079-0619-2021-24-2-70-92

Abstract

Not less than one hundred thousand Unmanned Aerial Vehicles (UAVs) are expected to perform flights simultaneously in Russia by 2035. The UAV fleet capacity triggers the development of the systems for informational support, operating control and management of UAV flights (Unmanned Aircraft System Traffic Management (UTM) systems) similar to that one already operating in manned aviation. The challenges arising in the sphere of civil aviation cannot be solved without wireless communication. The goals of this article are as follows: 1) familiarization of communication experts with the latest scientific developments of unmanned aerial technologies 2) description of the telecommunication-related problems of extensive systems of UAV control encountered by development engineers. In this article a schematic architecture and main functions of UTM systems are described as well as the examples of their implementation. Special emphasis is put on enhancing flight safety by means of a rational choice of communication technologies to manage conflicts (Conflict Management) known as "collision avoidance". The article analyzes the application of a wide range of wireless technologies ranging from Wi-Fi and Automatic Dependent Surveillance Broadcast (ADS-B) to 5G cellular networks as well as cell-free networks contributing to the development of 6G communication networks. As a result of the analysis, a list of promising research trends at the intersection of the fields of wireless communication and UAVs for civil application is made.

About the Author

E. A. Vinogradov
KU Leuven
Belgium

Evgenii А. Vinogradov, Doctor of Philosophy (PhD), Researcher, Electrical Engineering Chair, Faculty of Engineering

Leuven



References

1. Doole, M., Ellerbroek, J. and Hoekstra, J. (2018). Drone delivery: urban airspace traffic density estimation. Eighth SESAR Innovation Days, 8 p.

2. Haddad, C., Chaniotakis, E., Straubinger, A., Plötner, K. and Antoniou, C. (2020). Factors affecting the adoption and use of urban air mobility. Transportation Research Part A: Policy and Practice, vol. 132, pp. 696–712. DOI: 10.1016/j.tra.2019.12.020

3. PytlikZillig, L.M., Walther, J.C., Detweiler, C., Elbaum, S. and Houston, A. (2020). Public opinions of unmanned aerial technologies in 2014-2019: a technical and descriptive report. University of Nebraska Public Policy Center, Lincoln. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1000&context=lpz (accessed 10.11.2020).

4. Cohn, P., Green, A., Langstaff, M. and Roller, M. (2017). Commercial drones are here: the future of unmanned aerial systems. McKinsey&Company. Available at: https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/commercialdrones-are-here-the-future-of-unmanned-aerial-systems (accessed 10.11.2020).

5. Sandvik, K.B. (2015). African drone stories. BEHEMOTH – A Journal on Civilisation, vol. 8, no. 2, pp. 73–96. DOI: 10.6094/behemoth.2015.8.2.870

6. Bezborodova, O.E., Sherstnev, V.V., Vinogradov, O.S. and Vinogradova, N.A. (2018). Economic and legal issues of the use of wrong motor aircraft to ensure technosphere safety. Fortus: Economy & Political Researches, no. 2 (2), pp. 19–26. (in Russian)

7. Vinogradov, E., Minucci, F. and Pollin, S. (2020). Wireless communication for safe UAVs: from long-range deconfliction to short-range collision avoidance. IEEE Vehicular Technology Magazine, vol. 15, issue 2, pp. 88–95. DOI: 10.1109/MVT.2020.2980014

8. Motlagh, N.H., Taleb, T. and Arouk, O. (2016). Low-altitude unmanned aerial vehiclesbased internet of things services: comprehensive survey and future perspectives. IEEE Internet of Things Journal, vol. 3, issue 6, pp. 899–922. DOI: 10.1109/JIOT.2016.2612119

9. Gupta, L., Jain, R. and Vaszkun, G. (2016). Survey of important issues in UAV communication networks. IEEE Communications Surveys & Tutorials, vol. 18, issue 2, pp. 1123–1152. DOI: 10.1109/COMST.2015.2495297 (accessed 10.11.2020).

10. Hayat, S., Yanmaz, E. and Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Communications Surveys & Tutorials, vol. 18, issue 4, pp. 2624–2661. DOI: 10.1109/COMST.2016.2560343 (accessed 10.11.2020).

11. Zeng, Y., Wu, Q. and Zhang, R. (2019). Accessing from the sky: a tutorial on UAV communications for 5G and beyond. Proceedings of the IEEE, vol. 107, issue 12, pp. 2327–2375. DOI: 10.1109/JPROC.2019.2952892

12. Mozaffari, M., Saad, W., Bennis, M., Nam, Y. and Debbah, M. (2019). A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, vol. 21, issue 3, pp. 2334–2360. DOI: 10.1109/COMST.2019.2902862 (accessed 14.11.2020).

13. Vinogradov, E., Sallouha, H., De Bast, S., Azari, M.M. and Pollin, S. (2020). Tutorial on UAVs: a blue sky view on wireless communication. Journal of Mobile Multimedia, vol. 14, issue 4, pp. 395–468. DOI: 10.13052/jmm1550-4646.1443

14. Bondarev, A.N. and Kirichek, R.V. (2016). Overview of unmanned aerial apparatus for general use and regulation of air UAV movement in different countries. Telecom IT, vol. 4, no. 4, pp. 13–23. Available at: https://www.sut.ru/doci/nauka/review/20164/13-23.pdf (accessed 14.11.2020). (in Russian)

15. Panteleymonov, I.N., Belozertsev, A.V., Monastyrenko, А.А., Botsva, V.V. and Naumkin, A.V. (2020). The main trends in developing highly reliable communication and control systems for unmanned aerial vehicles. BMSTU Journal of Mechanical Engineering, no. 6 (723), pp. 78–88. DOI: 10.18698/0536-1044-2020-6-78-88 (in Russian)

16. Braun, S., Friedewald, M. and Valkenburg, G. (2015). Civilizing drones: military discourses going civil? Science & Technology Studies, vol. 28, no. 2, pp. 73–87. DOI: 10.23987/sts.55351

17. Veremeenko, K.K., Zheltov, S.Yu., Kozorez, D.A., Krasilshchikov, M.N. and others. (2009). Sovremennyye informatsionnye technologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatelnykh apparatov [Modern IT for UAV navigation and targeting], in M.N. Krasilshchikov, G.G. Sebryakov (Eds.). Moscow: FIZMATLIT, 556 p. (in Russian)

18. Verba, V.S. and Tatarsky, B.G. (2016). Kompleksy s bespilotnymi letatelnymi apparatami v 2-kh knigakh: Monografiya [Complexes with unmanned aerial vehicles in 2 books: Monograph]. Kniga 1. Printsipy postroeniya i osobennosti primeneniya kompleksov s BLA [Principles of construction and usage features of complexes with UAVs]. Moscow: Radiotekhnika, 512 p. (in Russian)

19. Verba, V.S. and Tatarsky, B.G. (2016). Kompleksy s bespilotnymi letatelnymi apparatami v 2-kh knigakh: Monografiya [Complexes with unmanned aerial vehicles in 2 books: Monograph]. Kniga 2. Robototehnicheskie kompleksy na osnove BLA [Robotic systems based on UAVs]. Moscow: Radiotekhnika, 824 p. (in Russian)

20. Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J. and Robinson, J.E. (2016). Unmanned aircraft system traffic management (UTM) concept of operations. 16th AIAA Aviation Technology Integration and Operations Conference, Jun. 2016. DOI: 10.2514/6.2016-3292

21. Lappas, V., Zoumponos, G., Kostopoulos, V., Shin, H. and others. (2020). EuroDRONE, a european UTM testbed for U-Space. International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, pp. 1766–1774.

22. Kunzi, F. (2016). Framework for risk-based derivation of performance and interoperability requirements for UTM avionics. IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, pp. 1–10. DOI: 10.1109/DASC.2016.7778050

23. Belkhouche, F. (2013). Modeling and calculating the collision risk for air vehicles. IEEE Transactions on Vehicular Technology, vol. 62, no. 5, pp. 2031–2041. DOI: 10.1109/TVT.2013.2238265

24. Weinert, A., Campbell, S., Vela, A., Schuldt, D. and Kurucar, J. (2018). Well-clear recommendation for small unmanned aircraft systems based on unmitigated collision risk. Journal of Air Transportation, vol. 26, no. 3, pp. 113–122. DOI: 10.2514/1.D0091

25. Schroth, F. (2017). The DRL sets world record with drone whizzing at 179.6 mph. dronelife. 2017. Available at: https://dronelife.com/2017/07/14/drone-racing-league-drl-buildsfastest-racing-drone/#:~:text=The%20fastest%20racing%20drone%2C%20the,46%2C000%20RPMs (accessed 20.11.2020).

26. Johnson, S.C., Petzen, A. and Tokotch, D. (2017). Exploration of detect-and-avoid and well-clear requirements for small UAS maneuvering in an urban environment. 17th AIAA Aviation Technology, Integration, and Operations Conference, June 2017. DOI: 10.2514/6.2017-3074

27. Geister, D. (2017). Concept for urban airspace integration DLR U-Space blueprint. Deutsches Zentrum für Luft-und Raumfahrt. Available at: https://www.dlr.de/dlr/presse/Portaldata/1/Resources/documents/2017/Concept_for_Urban_Airspace_Integration.pdf (accessed 20.11.2020).

28. Kosianchuk, V.V., Selvesiuk, N.I. and Khammatov, R.R. (2019). An overview of the main ways to improve the ads-b system security. Civil Aviation High Technologies, vol. 22, no. 1, pp. 39–50. DOI: 10.26467/2079-0619-2019-22-1-39-50 (in Russian)

29. Colpaert, A., Vinogradov, E. and Pollin, S. (2018). Aerial coverage analysis of cellular systems at LTE and mmWave frequencies using 3D city models. Sensors, vol. 18, no. 12, ID 4311. DOI: 10.3390/s18124311 (accessed 20.11.2020).

30. Azari, M.M., Rosas, F., Chiumento, A. and Pollin, S. (2017). Coexistence of terrestrial and aerial users in cellular networks. 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, pp. 1–6. DOI: 10.1109/GLOCOMW.2017.8269068

31. Lyu, J. and Zhang, R. (2019). Network-connected UAV: 3-D system modeling and coverage performance analysis. IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7048–7060. DOI: 10.1109/JIOT.2019.2913887 (accessed 20.11.2020).

32. Van Der Bergh, B., Chiumento, A. and Pollin, S. (2016). LTE in the sky: trading off propagation benefits with interference costs for aerial nodes. IEEE Communications Magazine, vol. 54, no. 5, pp. 44–50. DOI: 10.1109/MCOM.2016.7470934

33. Fakhreddine, A., Bettstetter, C., Hayat, S., Muzaffar, R. and Emini, D. (2019). Handover challenges for cellular-connected drones. Proceedings of the 5th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications DroNet, Association for Computing Machinery, pp. 9–14. DOI: 10.1145/3325421.3329770

34. Hayat, S., Bettstetter, C., Fakhreddine, A., Muzaffar, R. and Emini, D. (2019). An experimental evaluation of LTE-A throughput for drones. Proceedings of the 5th Workshop on Micro Aerial Vehicle Networks, Systems, and Applications DroNet, Association for Computing Machinery, pp. 3–8. DOI: 10.1145/3325421.3329765

35. Huang, Y., Wu, Q., Wang, T., Zhou, G. and Zhang, R. (2020). 3D beam tracking for cellular-connected UAV. IEEE Wireless Communications Letters, vol. 9, issue 5, pp. 736–740. DOI: 10.1109/LWC.2020.2968312

36. Huang, Y., Wu, Q., Lu, R., Peng, X. and Zhang, R. (2021). Massive MIMO for cellularconnected UAV: challenges and promising solutions. IEEE Communications Magazine, vol. 59, no. 2, pp. 84–90. DOI: 10.1109/MCOM.001.2000552

37. Colpaert, A., Vinogradov, E. and Pollin, S. (2020). 3D beamforming and handover analysis for UAV networks. 2020 IEEE Globecom Workshops, GC Wkshps, pp. 1–6. DOI: 10.1109/GCWkshps50303.2020.9367570

38. Strohmeier, M., Schafer, M., Lenders, V. and Martinovic, I. (2014). Realities and challenges of nextgen air traffic management: the case of ADS-B. IEEE Communications Magazine, vol. 52, no. 5, pp. 111–118. DOI: 10.1109/MCOM.2014.6815901

39. Consiglio, M., Duffy, B., Balachandran, S., Munoz, C. and Glaab, L. (2019). Sense and avoid characterization of the independent configurable architecture for reliable operations of unmanned systems. Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019). NTRS – NASA Technical Reports Server. Available at: http://www.atmseminar.org/seminarContent/seminar13/papers/ATM_Seminar_2019_paper_50.pdf (accessed 27.11.2020).

40. Marques, M., Brum, A., Antunes, S. and Mota, J.G. (2018). Sense and avoid implementation in a small unmanned aerial vehicle. 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO), Ponta Delgada. DOI: 10.1109/CONTROLO.2018.8514548

41. Minucci, F., Vinogradov, E. and Pollin, S. (2020). Avoiding collisions at any (low) cost: ADS-B like position broadcast for UAVs. IEEE Access, vol. 8, pp. 121843–121857. DOI: 10.1109/ACCESS.2020.3007315 (accessed 27.11.2020).

42. Lin, C.E., Shao, P.C. and Lin, Y.Y. (2020). System operation of regional UTM in Taiwan. Aerospace, vol. 7, issue 5, pp. 7–65. DOI: 10.3390/aerospace7050065 (accessed 27.11.2020).

43. Arshad, R., ElSawy, H., Sorour, S., Al-Naffouri, T.Y. and Alouini, M. (2017). Velocityaware handover management in two-tier cellular networks. IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1851–1867. DOI: 10.1109/TWC.2017.2655517 (accessed 27.11.2020).

44. Ngo, H.Q., Ashikhmin, A., Yang, H., Larsson, E.G. and Marzetta, T.L. (2015). Cellfree massive MIMO: uniformly great service for everyone. 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 201–205. DOI: 10.1109/SPAWC.2015.7227028

45. Buzzi, S. and D’Andrea, C. (2017). Cell-free massive MIMO: user-centric approach. IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 706–709. DOI: 10.1109/LWC.2017.2734893

46. Ngo, H.Q., Ashikhmin, A., Yang, H., Larsson, E.G. and Marzetta, T.L. (2017). Cellfree massive MIMO versus small cells. IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1834–1850. DOI: 10.1109/TWC.2017.2655515

47. Zhang, J., Chen, S., Lin, Y., Zheng, J., Ai, B. and Hanzo, L. (2019). Cell-free massive MIMO: a new next-generation paradigm. IEEE Access, vol. 7, pp. 99878–99888. DOI: 10.1109/ACCESS.2019.2930208 (accessed 27.11.2020).

48. D'Andrea, C., Garcia-Rodriguez, A., Geraci, G., Giordano, L.G. and Buzzi, S. (2019). Cell-free massive MIMO for UAV communications. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. DOI: 10.1109/ICCW.2019.8756714

49. Shokry, M., Ebrahimi, D., Assi, C., Sharafeddine, S. and Ghrayeb, A. (2020). Leveraging UAVs for coverage in cell-free vehicular networks: a deep reinforcement learning approach. IEEE Transactions on Mobile Computing. DOI: 10.1109/TMC.2020.2991326 (accessed 11.12.2020).

50. Vinogradov, E., Kovalev, D.A. and Pollin, S. (2018). Simulation and detection performance evaluation of a UAV-mounted passive radar. IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1185–1191. DOI: 10.1109/PIMRC.2018.8580940 (accessed 11.12.2020).

51. Sallouha, H., Chiumento, A., Rajendran, S. and Pollin, S. (2019). Localization in ultra narrow band IoT networks: design guidelines and tradeoffs. IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9375–9385. DOI: 10.1109/JIOT.2019.2931628 (accessed 11.12.2020).

52. Guvenc, I., Koohifar, F., Singh, S., Sichitiu, M.L. and Matolak, D. (2018). Detection, tracking, and interdiction for amateur drones. IEEE Communications Magazine, vol. 56, no. 4, pp. 75–81. DOI: 10.1109/MCOM.2018.1700455

53. Azari, M.M., Sallouha, H., Chiumento, A., Rajendran, S., Vinogradov, E. and Pollin, S. (2018). Key technologies and system trade-offs for detection and localization of amateur drones. IEEE Communications Magazine, vol. 56, no. 1, pp. 51–57. DOI: 10.1109/MCOM.2017.1700442

54. Hügler, P., Roos, F., Schartel, M., Geiger, M. and Waldschmidt, C. (2018). Radar taking off: new capabilities for UAVs. IEEE Microwave Magazine, vol. 19, no. 7, pp. 43–53. DOI: 10.1109/MMM.2018.2862558

55. Gageik, N., Benz, P. and Montenegro, S. (2015). Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access, vol. 3, pp. 599–609. DOI: 10.1109/ACCESS.2015.2432455 (accessed 27.01.2021).

56. Rozantsev, A., Lepetit, V. and Fua, P. (2017). Detecting flying objects using a single moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 5, pp. 879–892. DOI: 10.1109/TPAMI.2016.2564408

57. Sharov, V.D., Eliseev, B.P. and Vorobyov, V.V. (2019). Analysis of deficiencies in the procedures for the risk management of safety in the ICAO documents. Civil Aviation High Technologies, vol. 22, no. 2, pp. 49–61. DOI: 10.26467/2079-0619-2019-22-2-49-61 (in Russian)


Review

For citations:


Vinogradov E.A. Key wireless communication technologies to support traffic management systems of unmanned aerial vehicles for civil application (review of foreign literature). Civil Aviation High Technologies. 2021;24(2):70-92. (In Russ.) https://doi.org/10.26467/2079-0619-2021-24-2-70-92

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)