Increase in high-lift devices efficiency of swept wing
https://doi.org/10.26467/2079-0619-2020-23-6-101-120
Abstract
About the Author
Yu. S. MikhailovRussian Federation
Candidate of Technical Sciences, Leading Research Fellow,
Zhukovsky
References
1. Rudolph, P.K.C. (1996). High-lift System of Commercial Subsonic Airlines. Seattle, WA United States, 166 p.
2. Reckzeh, D. (2005). Aerodynamic design of airbus aerodynamic design high-lift wings. DLR Ehemaligentreffen Braunschweig, 24 p.
3. Antunes, A.P., Galdino, R.S. and Azevedo, J.L. (2007). A study of transport aircraft high-lift design approaches. 45th AIAA Aerospace Sciences Meeting and Exhibit, 18 p. DOI: https://doi.org/10.2514/6.2007-38
4. Szodruch, J. and Hilbig, R. (1988). Variable wing camber for transport aircraft. Progress in Aerospace Sciences, vol. 25, issue 3, pp. 297–328. DOI: https://doi.org/10.1016/0376-0421(88)90003-6
5. Mihajlov, Yu.S., Stepanov, Yu.G. and Hozyainova, G.V. (1990). Primeneniye adaptinoy mekhanizatsii dlya umensheniya soprotivleniya profiley i krylev na okolozvukovykh skorostyakh [Employment of adaptive mechanization for drag reduction on airfoil and wings at transonic speed]. Trudy TsAGI, no. 2462, pp. 3–21. (in Russian)
6. Petrov, A.V., Stepanov, Yu.G. and Yudin, G.A. (1995). Aerodinamika vzletnoposadochnoy mekhanizatsii [Aerodynamics of takeoff and landing mechanization]. TsAGI: osnovnyye etapy nauchnoy deyatelnosti 1968-1993: sbornik nauchnykh statey. Moscow: Nauka, pp. 49–59. (in Russian)
7. Hansen, H. (2003). Application of mini-trailing-edge devices in the awiator project. Airbus Deutschland, EGAG, Bremen, Germany, 19 p.
8. Nelson, T. (2005). 787 Systems and Performance. Boeing, 36 p. Available at: http://www.myhres.com/Boeing-787-Systems-and-Performance.pdf (accessed 14.10.2020).
9. Reckzeh, D. (2014). Multifunctional wing moveables: design of the A350XWB and the way to future concepts. 29th Congress of the International Council of the Aeronautical Sciences, ICAS, 10 p.
10. Schindler, К., Reckzeh, D., Scholz, U. and Grimminger, A. (2010). Aerodynamic design of high-lift devices for civil transport aircraft using RANS CFD. 28th AIAA Applied Aerodynamics Conference, 9 p. DOI: https://doi.org/10.2514/6.2010-4946
11. Omar, E., Zierten, T., Hahn, M., Szpizo, E. and Mahal, A. (1973). Two-dimensional wind-tunnel tests of a NASA supercritical airfoil with various high-lift systems. Volume II-Test Data. NASA CR-2215, 232 p.
12. Mihajlov, Yu.S. (2018). Razvitiye klassicheskikh konfiguratsiy mekhanizatsii strelovidnogo kryla [Evolution of classical mechanization version for swept wing]. Sbornik dokladov XII mezhdunarodnoy nauchnoy konferentsii po amfibiynoy i bezaerodromnoy aviatsii [Proceedings of the XII international scientific conference on amphibious and airplane with no need of airfields]. Hydroaviasalon 2018, pp. 125–133 (in Russian).
13. Hovelmann, A. (2011). Aerodynamic investigations of noise-reducing high-lift systems for passenger transport aircraft. KTH Registration Number: 860428-A553. Institute of Aerodynamics and Flow Technology. German Aerospace Center, Braunschweig, 98 p.
14. Zaitsev, M.Yu., Belyaev, I.V., Kopiev, V.F. and Mironov, M.A. (2012). An experimental study of reducing narrowband noise of a slat using chevrons. Acoustical Physics, vol. 58, no. 4, pp. 411–419. (in Russian)
Review
For citations:
Mikhailov Yu.S. Increase in high-lift devices efficiency of swept wing. Civil Aviation High Technologies. 2020;23(6):101-120. (In Russ.) https://doi.org/10.26467/2079-0619-2020-23-6-101-120