System based approach to the design of tension sensing element made of modified diamond
https://doi.org/10.26467/2079-0619-2020-23-6-84-100
Abstract
About the Authors
S. V. DianovRussian Federation
Candidate of Technical Sciences,
Moscow
V. M. Novichkov
Russian Federation
Candidate of Technical Sciences, Associate Professor,
Moscow
References
1. Cîrstoiu, C., Holmes, Z. and Iosue, J. (2020). Variational fast forwarding for quantum simulation beyond the coherence time. NPJ Quantum Information, vol. 6, no. 82, p. 10. DOI: https://doi.org/10.1038/s41534-020-00302-0
2. Cho, A. (2020). IBM promises 1000-qubit quantum computer-a milestone-by 2023. Science. 15 September. DOI: https://doi.org/10.1126/science.abe8122 (accessed 19.09.2020).
3. Gorenshtein, I.A. (1976). Gidrostatichnye chastotnyye datchiki pervichnoy informatsii [Hydrostatic frequency sensors of primary information]. Moscow: Mashinostroyeniye, 182 p. (in Russian)
4. Arai, K., Lee, J., Belthangady, C., Glenn, D.R., Zhang, H. and Walsworth, R.L. (2018). Geometric phase magnetometry using a solid-state spin. Nature Communication 9, Article number: 4996. DOI: https://doi.org/10.1038/s41467-018-07489-z (accessed 08.09.2020).
5. Craik, D.P.L.A., Kehayias, P., Greenspon, A.S. and others. (2018). A microwaveassisted spectroscopy technique for determining charge state in nitrogen-vacancy ensembles in diamond. arXiv.org. Available at: https://arxiv.org/abs/1811.01972v1 (accessed 02.10.2020).
6. Bhallamudi, V. and Hammel, P. (2015). Nanoscale MRI. Nature Nanotechnology 10, pp. 104–106. DOI: https://doi.org/10.1038/nnano.2015.7 (accessed 08.10.2020).
7. Bucher, D.B., Glenn, D.R., Park, H., Lukin, M.D. and Walsworth, R.L. (2018). Hyperpolarization-enhanced NMR spectroscopy with femtomole sensitivity using quantum defects in diam. Physical Review X. DOI: 10.1103/PhysRevX.10.021053 (accessed 08.09.2020).
8. Casola, F., van der Sar, T. and Yacoby, A. (2018). Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nature Review Materials, vol. 3, Article number: 17088. Available at: https://www.nature.com/articles/natrevmats201788 (accessed 08.09.2020).
9. Teeling-Smith, R.M., Jung, Y.W., Scozzaro, N. and others. (2016). Electron paramagnetic resonance of a single nanodiamond attached to an individual biomolecule. Biophysical Journal, vol. 110, issue 9, pp. 2044–2052. DOI: https://doi.org/10.1016/j.bpj.2016.03.022
10. Schloss, J.M., Barry, J.F., Turner, M.J. and Walsworth, R.L. (2018). Simultaneous broadband vector magnetometry using solid-state spins. Physical Review Applied, vol. 10, issue 3, pp. 034–044. DOI: https://doi.org/10.1103/PhysRevApplied.10.034044
11. Hopper, D.A., Shulevitz, H.J. and Bassett, L.C. (2018). Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines, vol. 9, issue 9, 437. DOI: https://doi.org/10.3390/mi9090437 (accessed 08.09.2020).
12. Fernández-Acebal, P., Rosolio, O., Scheuer, J. and others. (2018). Toward hyperpolarization of oil molecules via single nitrogen vacancy centers in diamond. Nano Lett, vol. 18, no. 3, pp. 1882–1887. DOI: https://doi.org/10.1021/acs.nanolett.7b05175
13. Jaskula, J.-C., Shields, B.J., Bauch, E., Lukin, M.D., Trifonov, A.S. and Walsworth, R.L. (2019). Improved quantum sensing with a single solid-state spin via spin-to-charge conversion. Physical Review Applied, vol. 11, issue 6. DOI: https://doi.org/10.1103/PhysRevApplied.11.064003 (accessed 08.09.2020).
14. Marseglia, L., Saha, K., Ajoy, A. and others. (2018). Bright nanowire single photon source based on siv centers in diamond. Optics Express, vol. 26, issue 1, pp. 80–89. DOI: https://doi.org/10.1364/OE.26.000080 (accessed 08.09.2020).
15. Ohtsu, M. (2012). Dressed photon technology. Nanophotonics, vol. 1, issue 1, pp. 83–97. DOI: https://doi.org/10.1515/nanoph-2011-0001 (accessed 08.09.2020).
16. Jia, W., Shi, Z., Qin, X., Rong, X. and Du, J. (2018). Ultra-broadband coplanar waveguide for optically detected magnetic resonance of nitrogen-vacancy centers in diamond. Review of Scientific Instruments, vol. 89, issue 6. DOI: https://doi.org/10.1063/1.5028335 (accessed 08.09.2020).
17. Wolfe, C.S., Manuilov, S.A., Purser, C.M., Teeling-Smith, R., Dubs, C., Hammel, P.C. and Bhallamudi, V.P. (2016). Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins. Applied Physics Letters, vol. 108, issue 23. DOI: https://doi.org/10.1063/1.4953108 (accessed 08.09.2020).
18. Tang, H., Ahmed, I., Puttapirat, P. and other. (2018). Investigation of multi-bunching by generating multi-order fluorescence of NV center in diamond. Physical Chemistry Chemical Physics, vol. 20, issue 8, pp. 5721–5725. DOI: https://doi.org/10.1039/C7CP08005K (accessed 08.09.2020).
19. Labanowski, D., Bhallamudi, V.P., Guo, Q., Purser, C.M. and McCullian, B.A. (2018). Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond. Science Advances, vol. 4, no. 9. 6 p. DOI: https://doi.org/10.1126/sciadv.aat6574 (accessed 08.09.2020).
20. Chrostoski, P., Sadeghpour, H.R. and Santamore, D.H. (2018). Electric noise spectra of a near-surface nitrogen-vacancy center in diamond with a protective layer. Physical Review Applied, vol. 10, issue 6. DOI: https://doi.org/10.1103/PhysRevApplied.10.064056 (accessed 08.09.2020).
21. Murai, T., Makino, T., Kato, H. and other. (2018). Engineering of fermi level by nin diamond junction for control of charge states of NV centers. Applied Physics Letters, vol. 112, issue 11. DOI: https://doi.org/10.1063/1.5010956 (accessed 08.09.2020).
22. Subedi, S.D., Fedorov, V.V., Peppers, J., Martyshkin, D.V., Mirov, S.B., Shao, L. and Loncar, M. (2018). Laser spectroscopy of highly doped NV-centers in diamond. Proceedings SPIE, vol. 10511, Solid State Lasers XXVII: Technology and Devices, 105112D DOI: https://doi.org/10.1117/12.2290705 (accessed 08.09.2020).
23. Sjolander, T.F., Tayler, M.C.D., Kentner, A., Budker, D. and Pines, A. (2017). 13CDecoupled J-coupling spectroscopy using two-dimensional nuclear magnetic resonance at zero-field. The Journal of Physical Chemistry Letters, vol. 8, issue 7, pp. 1512–1516. DOI: https://doi.org/10.1021/acs.jpclett.7b00349 (accessed 08.09.2020).
24. Udvarhelyi, P., Shkolnikov, V.O., Gali, A., Burkard, G. and Pályi, A. (2018). Spinstrain interaction in nitrogen-vacancy centers in diamond. Physical Review B, vol. 98, issue 7, 075201. DOI: https://doi.org/10.1103/PhysRevB.98.075201 (accessed 08.09.2020).
25. Zhang, H., Ku, M.J.H., Casola, F. and others. (2020). Spin-torque oscillation in a magnetic insulator probed by a single-spin sensor. Physical Review B, vol. 102, issue 2, 024404. DOI: https://doi.org/10.1103/PhysRevB.102.024404 (accessed 08.09.2020).
26. Barfuss, A., Teissier, J., Neu, E.A. Nunnenkamp, E.A. and Maletinsky, P. (2015). Strong mechanical driving of a single electron spin. Nature Physics, vol. 11, pp. 820–824. DOI: https://doi.org/10.1038/nphys3411 (accessed 08.09.2020).
27. Delaney, P., Greer, J.C. and Larsson, J.A. (2010). Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. Nano Letters, vol. 10, issue 2, pp. 610–614. DOI: https://doi.org/10.1021/nl903646p (accessed 08.09.2020).
28. Zhu, X., Saito, S., Kemp, A. and other. (2011). Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature, vol. 478, pp. 221–224. DOI: https://doi.org/10.1038/nature10462 (accessed 08.09.2020).
29. Liu, G.-Q. and Pan, X.-Y. (2018). Quantum information processing with nitrogenvacancy centers in diamond. Chinese Physics B, vol. 27, no. 2. DOI: https://doi.org/10.1088/1674-1056/27/2/020304 (accessed 08.09.2020).
30. Volkov, D.I. and Proskuryakov, S.D. (2016). Ultrasonic method of quality control of the cutting plates from supersolid materials. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, vol. 18, no. 1-2, pp. 166–169. (in Russian)
31. Timoshenko, S. (1937). Vibration Problems in Engineering. D.N.Y., Van Nostrand Company, Inc., 470 p. Available at: https://archive.org/details/vibrationproblem031611mbp/mode/2up (accessed 02.10.2020)
Review
For citations:
Dianov S.V., Novichkov V.M. System based approach to the design of tension sensing element made of modified diamond. Civil Aviation High Technologies. 2020;23(6):84-100. https://doi.org/10.26467/2079-0619-2020-23-6-84-100