Using modern clustering techniques for parametric fault diagnostics of turbofan engines
https://doi.org/10.26467/2079-0619-2020-23-6-20-27
Abstract
Keywords
About the Author
I. J. BuraimahNigeria
Principal Engineer in the Department of Engineering Space Systems,
Abuja
References
1. Buraimah, I.J. (2015). Primenimosti neyrosetevykh algoritm k otsenke tekhnicheskogo sostoyaniya aviatsionnykh dvigateley [Application of the neural network algorithm for determining technical condition of aircraft engine]. Nauchnyye chteniya po aviatsii, posvyashchennyye pamyati N.Ye. Zhukovskogo: sbornik dokladov XII Vserossiyskoy nauchno-tekhnicheskoy konferentsii [12th Russian Scientific and Technical Conference, (technical reading on aviation), Dedicated to the memory of Ghukovski, N.E.], pp. 104–106. (in Russian).
2. DePold, H.R. and Gass, F.D. (1999). The application of expert systems and neural networks to gas turbine prognostics and diagnostics. ASME. Journal of Engineering for Gas Turbines and Power, vol. 121, issue 4, pp. 607–612. DOI: https://doi.org/10.1115/1.2818515
3. Polycarpou, M.M. (1994). An on-line approximation approach to fault monitoring, diagnosis, and accommodation. SAE Technical Paper 941217. DOI: https://doi.org/10.4271/941217
4. Merrigton, G.L. (1994). Fault diagnosis in gas turbines using a model-based technique. ASME Journal of Engineering for Gas Turbines and Power, vol. 116, issue 2, pp. 374–380. DOI: https://doi.org/10.1115/1.2906830
5. Gorinevsky, D., Nwadiogbu, E. and Mylaraswany, D. (2002). Model based diagnostics for small-scale turbomachines. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, vol. 4, pp. 4784–4789. DOI: 10.1109/CDC.2002.1185136
6. Buraimah, I.J. (2014). O primenimosti neyrosetevyye algoritm k otsenke tekhnicheskogo sostoyaniya aviatsionnykh dvigateley [Using neural network based algorithm to determine technical condition of aircraft engines]. Aviatsiya: istoriya, sovremennost, perspektivy razvitiya: sbornik trudov IV Mezhdunarodnoy nauchno-prakticheskoy konferentsii [4th International Technical and Scientific Conference, ‘Aviation: history, current technology, perspective development’]. Minsk, Belarus. (in Russian)
7. Wang, X. and Syrmos, V.L. (2008). Fault detection, identification and estimation in the electro-hydraulic actuator system using EKF-based multiple-model estimation. 16th Mediterranean Conference on Control and Automation, pp. 1693–1698. DOI: 10.1109/MED.2008.4602248
8. Luo, J., Namburu, M., Pattipati, K., Qiao, L., Kawamoto, M. and Chigusa, S. (2003). Model-based prognostic techniques [maintenance applications]. Proceedings AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference, Anaheim, CA, USA, pp. 330–340. DOI: 10.1109/AUTEST.2003.1243596
9. Ofsthum, S.C. and Wilmering, T.J. (2004). Model-driven development of integrated health management architectures. IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720). Big Sky, MT, vol. 6, pp. 3692–3705. DOI: 10.1109/AERO.2004.1368185
10. Bezdek, J.C. (1981). Pattern recognition with fuzzy objectives function algorithm. Springer US, New York, 272 p. DOI: 10.1007/978-1-4757-0450-1
11. Dunn, J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact, wellseparated clusters. Cybernetics and System Journal, vol. 3, issue 3, pp. 32–57. DOI: https://doi.org/10.1080/01969727308546046
Review
For citations:
Buraimah I.J. Using modern clustering techniques for parametric fault diagnostics of turbofan engines. Civil Aviation High Technologies. 2020;23(6):20-27. https://doi.org/10.26467/2079-0619-2020-23-6-20-27