1. Федосов Е.А. Перспективный облик и технологии разработки комплексов бортового оборудования воздушных судов / Е.А. Федосов, Г.А. Чуянов, В.В. Косьянчук, Н.И. Сельвесюк // Полет. Общероссийский научно-технический журнал. 2013. № 8. С. 41-52.
2. Белов Е.Б. Основы информационной безопасности: учеб. пособие для вузов / Е.Б. Белов, В.П. Лось, Р.В. Мещеряков, А.А. Шелупанов. М.: Горячая линия-Телеком, 2006. 544 с.
3. Демин В.В., Суворов Е.В. Интегрированная система информационной безопасности // Сети и системы связи. 1996. № 9. С. 127-133.
4. Biesecker C. Boeing 757 testing shows airplanes vulnerable to hacking [Электронный ресурс] // Aviation explorer. URL: https://www.aviationtoday.com/2017/11/08/boeing-757-testingshows-airplanes-vulnerable-hacking-dhs-says (дата обращения 11.05.2020).
5. Alhabeeb M. Information security threats classification pyramid / M. Alhabeeb, A. Almuhaideb, P.D. Le, B. Srinivasan // Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications Workshops, 2010. Pp. 208-213.
6. Strohmeier M. On perception and reality in wireless air traffic communication security / M. Strohmeier, M. Schäfer, R. Pinheiro, V. Lenders, I. Martinovic // IEEE Transactions on Intelligent Transportation Systems. 2017. Vol. 18, no. 6. Pp. 1338-1357.
7. Jacob J.M. High assurance security and safety for digital avionics // The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576), USA: Salt Lake City, UT, 2004. Pp. 8. https://doi.org/10.1109/DASC.2004.1390776
8. Sun J.Z. Integration of scheduled structural health monitoring with airline maintenance program based on risk analysis / J.Z. Sun, D. Chen, C.Y. Li, H.S. Yan // Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2018. Vol. 232, iss. 1. Pp. 92-104. https://doi.org/10.1177/1748006X17742777
9. Liao N., Li F., Song Y. Research on real-time network security risk assessment and forecast // International Conference on Intelligent Computation Technology and Automation (ICICTA), China: Changsha. 2010. Vol. 3. Pp. 84-87.
10. Jungwirth P. Cyber defense through hardware security / P. Jungwirth, P. Chan, T. Barnett, A.H. Badawy // Disruptive Technologies in Information Sciences. International Society for Optics and Photonics, 2018. Vol. 10652. Pp. 106520P. https://doi.org/10.1117/12.2302805
11. Ortalo R., Deswarte Y., Kaaniche M. Experimenting with quantitative evaluation tools for monitoring operational security // IEEE Transactions on Software Engineering. 1999. Vol. 25, no. 5. Pp. 633-650. https://doi.org/10.1109/32.815323
12. Ben Mahmoud M.S., Larrieu N., Pirovano A. A risk propagation based quantitative assessment methodology for network security-aeronautical network case study // 2011 Conference on Network and Information Systems Security. La Rochelle, 2011. Pp. 1-9. https://doi.org/10.1109/SARSSI.2011.5931372
13. Barlow R.E., Proschan F. Importance of system components and fault tree events // Stochastic Processes and their Applications. 1975. Vol. 3, iss. 2. Pp. 153-173. https://doi.org/10.1016/0304-4149(75)90013-7
14. Barlow R.E., Proschan F. Statistical theory of reliability and life testing.probability models. Silver Springs, MD, 1981. 290 p.
15. Goncharenko A. Development of a theoretical approach to the conditional optimization of aircraft maintenance preference uncertainty // Aviation. 2018. Vol. 22, no. 2. Pp. 40-44. https://doi.org/10.3846/aviation.2018.5929
16. Obadimu S.O., Karanikas N., Kourousis K.I. Development of the minimum equipment list: Current practice and the need for standardization [Электронный ресурс] // Aerospace. 2020. Vol. 7, iss. 1. 7. URL: https://www.mdpi.com/2226-4310/7/1/7 (дата обращения 3.05.2020). https://doi.org/10.3390/aerospace7010007
17. Chuyanov G.A. Advanced avionics equipment on the basis of second generation integrated modular avionics / G.A. Chuyanov, V.V. Kosyanchuk, N.I. Selvesyuk, E.Yu. Zybin // 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014. 6 p.
18. Зубков Б.В. Методологические основы анализа и оценки безопасности полетов и летной годности воздушных судов (теория и практика). М.: МГТУГА, 1997. 68 с.
19. Зубков Б.В., Аникин Н.В. Авиационное техническое обеспечение безопасности полетов. М.: Воздушный транспорт, 1993. 280 с.
20. Зубков Б.В., Шаров В.Д. Теория и практика определения рисков в авиапредприятиях при разработке системы управления безопасностью полета. М.: МГТУГА, 2010. 196 с.
21. Зыбин Е.Ю., Косьянчук В.В., Сельвесюк Н.И. Электрификация и интеллектуализация - основные тенденции развития энергокомплекса воздушных судов // Авиационные системы. 2016. № 5. С. 45-51.
22. Deng Q.C., Santos B.F., Curran R. A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization // European Journal of Operational Research. 2020. Vol. 281, iss. 2. Pp. 256-273. https://doi.org/10.1016/j.ejor.2019.08.025
23. Batuwangala E., Silva J., Wild G. The regulatory framework for safety management systems in airworthiness organisations [Электронный ресурс] // Aerospace. 2018. Vol. 5, iss. 4. 117. URL: https://www.mdpi.com/2226-4310/5/4/117 (дата обращения 7.06.2020). https://doi.org/10.3390/aerospace5040117
24. Stadnicka D. Skills management in the optimization of aircraft maintenance processes / D. Stadnicka, D. Arkhipov, O. Battaia, M.C. Chandima Ratnayake // 20th IFAC World Congress. 2017. Vol. 50, iss. 1. Pp. 6912-6917. https://doi.org/10.1016/j.ifacol.2017.08.1216