Preview

Civil Aviation High Technologies

Advanced search

RADIO-WAVES REFLECTION AT REMOTE SENSING OF UNDERLYING COVERS

https://doi.org/10.26467/2079-0619-2019-22-3-57-66

Abstract

Monitoring technologies are rapidly developing at present and allow to extract and use non-coordinate information about objects. Noncoordinate information is the information about the type and properties of an object under study. Remote sensing is the main method of solving monitoring problems where special positioning belongs to the radar methods, based on space-time processing of signals and, in particular, on methods of radio polarimetry. It is necessary to have information about the surface in order to solve the monitoring task. The slightest changes in the electrical and physical properties of such areas as salinity, humidity, soil composition, etc. will lead to a change in the basic electrodynamics of the surface, notably its complex dielectric permittivity. The article demonstrates the precise solutions to the problems of radio-waves reflection from a layered surface with various laws of changes of the complex permittivity  in depth. Media with exponential and quadratic laws of variation  for arbitrary angles of incidence of the radio wave on the surface are considered. Precise decision is obtained for layered media with the law of change in the complex permittivity the polynomial and linear characteristics. A similar problem for the parabolic layer is considered separately. The detailed analysis of radio waves reflection from the medium with a matching layer is carried out. The nature of the electromagnetic field inside the transition layer is studied in detail. The article is illustrated by the graphs showing the dependences of an electromagnetic wave reflection coefficient on the layered medium with linear and exponential laws of variation of the complex dielectric constant over depth.

About the Authors

L. P. Ligthart
Delft University of Technology
Netherlands
Leo P. Ligthart, Doctor of Philosophy, Honorary Doctor of Moscow State Technical University of Civil Aviation, Delft University of Technology, International Research Centre for Telecommunications-Transmission and Radar


A. I. Kozlov
Moscow State Technical University of Civil Aviation
Russian Federation
Anatoly I. Kozlov, Doctor of Physical and Mathematical Sciences, Professor of Air Transport Radio Electronic Equipment Maintenance Chair


A. I. Logvin
Moscow State Technical University of Civil Aviation
Russian Federation
Alexander I. Logvin, Doctor of Technical Sciences, Professor of Air Traffic Control Chair


I. V. Avtin
Moscow State Technical University of Civil Aviation
Russian Federation
Igor V. Avtin, Post-graduate Student of Air Transport Radio Electronic Equipment Maintenance Chair


References

1. Kozlov, A.I., Logvin, A.I. and Sarychev, V.A. (2007). Polyarizatsiya radiovoln. Tom. 2. Radiolokatsionnaya polyarimetriya [Polarization of radio waves. Vol. 2. Radar polarimetry]. Moscow: Radiotekhnika, 640 р. (in Russian)

2. Maslov, V.Yu. (2006). Razresheniye po dalnosti dvukh tochechnykh obektov s ispolzovaniyem ortogonalno polyarizovannykh elektromagnitnykh voln [Resolution on the range of two point objects using orthogonally polarized electromagnetic waves]. The Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 107, pp. 55–59. (in Russian)

3. Maslov, V.Yu. (2006). Pelengovaniye protyazhennykh obektov s ispolzovaniyem ortogonalno polyarizovannykh elektromagnitnykh voln [Direction finding of extended objects using orthogonally polarized electromagnetic waves]. The Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 107, pp. 68–72. (in Russian)

4. Maslov, V.Yu. (2005). Differentsialnaya radiopolyarimetriya pri otrazhenii elektromagnitnykh voln ot dvukh obektov [Differential radio polarimetry in the reflection of electromagnetic waves from two objects]. The Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 93, pp. 116–119. (in Russian)

5. Horn, R. and Dzhonson, Ch. (1989). Matrichnyy analiz [Matrix analysis]. Per. s angl. Moscow: Mir, 120 р. (in Russian)

6. Spravochnik po radiolokatsii. V 2-kh kn. [Reference book of radar]. (2014). Ed. M.I. Skolnik. Moscow: Tekhnosfera. (in Russian)

7. Verba, V.S. (2015). Aviacionnye kompleksy radiolokacionnogo dozora i navedeniya. Principy postroeniya, problemy razrabotki i osobennosti funkcionirovaniya [Aviation complexes of radar surveillance and guidance. Principles of construction, problems of designing and features of functioning]. Moscow, Radiotekhnika, 525 р. (in Russian)

8. Kanaschenkov, A.I., Merkulov, V.I. and Samarin, O.F. (2002). Oblik perspektivnykh bortovykh radiolokatsionnykh sistem. Vozmozhnosti i ogranicheniya [The appearance of perspective on-board radar systems. Possibilities and limitations]. Moscow: IPRZHR, рр. 8–18. (in Russian)

9. Lavrov, A.A. (2013). Radiolokatsionnyy skorostnoy portret tseli. Osnovy teorii [Radar high-speed portrait of the target. Fundamentals of the theory]. Moscow: Radiotekhnika, рр. 106–108. (in Russian)

10. Dudnik, P.I., Il'chuk, A.R. and Tatarskij, B.G. (2007). Mnogofunktsionalnyye radiolokatsionnyye sistemy [Multifunctional radar systems]. Uchebnoye posobiye [Training manual]. Moscow: Drofa, 282 р. (in Russian)

11. Kondratenkov, G.S. and Frolov, A.Yu. (2005). Radiovideniye. Radiolokatsionnyye sistemy distantsionnogo zondirovaniya Zemli [Radio broadcasting. Radar systems for remote sensing of the Earth]. Uchebnoye posobiye [Training manual]. Moscow: Radiotekhnika, 280 р. (in Russian)

12. Radioelektronnyye sistemy. Osnovy postroeniya i teoriya [Radioelectronic systems. Fundamentals of construction and theory]. (2007). Spravochnik [Reference book]. Ed. Ya.D. Shirman. 2-e izd., pererab. i dop. Moscow: Radiotekhnika, 340 р. (in Russian) 13. Biard, R.U. and Mak, Lejn T.U. (2015). Malye bespilotnye letatelnye apparaty: teoriya i praktika [Small unmanned aerial vehicles: theory and practice]. Per. s angl. Moscow: Tekhnosfera, 120 р. (in Russian)

13. Ostrovityanov, R.V. and Basalov, F.A. (1982). Statisticheskaya teoriya radiolokatsii protyazhennykh tseley [Statistical theory of the radar of extended targets]. Moscow: Radio i svyaz, 260 р. (in Russian)

14. Obnaruzheniye, raspoznavaniye i opredeleniye parametrov obrazov obektov. Metody i algoritmy [Detection, recognition and definition of the parameters of objects images. Methods and algorithms]. (2012). Ed. A.V. Korennoj. Moscow: Radiotekhnika, 112 р. (in Russian)

15. Zvezhinskij, S.S. and Ivanov, V.A. (2007). Klassifikatsii i informatsionno-izmeritelnyye modeli sredstv obnaruzheniya [Classification and information-measuring models of detection tools]. Spetsialnaya tekhnika [Special equipment], no. 6, рр. 26–32. (in Russian)

16. Kozlov, A.I., Ligthart, LP. and Logvin, A.I. (1998). Modeling and verification of earthbased radar objects. Vol. 7. Requirements to accuracy and reliability of the equipment of determination of the objects parameters and signal characteristics. Moscow – Delft, 112 р.

17. Kozlov, A.I., Ligthart, LP. and Logvin, A.I. (2001). Mathematical and physical modeling of microwave scattering and polarimetric remote sensing. Monitoring the earth's environment using polarimetric radar: formulation and potential applications. Netherlands: Kluwer Academic Publishers, 410 p.


Review

For citations:


Ligthart L.P., Kozlov A.I., Logvin A.I., Avtin I.V. RADIO-WAVES REFLECTION AT REMOTE SENSING OF UNDERLYING COVERS. Civil Aviation High Technologies. 2019;22(3):57-66. https://doi.org/10.26467/2079-0619-2019-22-3-57-66

Views: 704


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)