PROMOTION OF TRANSPORT AIRСRAFT FLIGHT SAFETY TAKING INTO ACCOUNT UPDATED CERTIFICATION REQUIREMENTS FOR ICING CONDITIONS
https://doi.org/10.26467/2079-0619-2019-22-3-45-56
Abstract
About the Authors
V. G. TsipenkoRussian Federation
Vladimir G. Tsipenko, Doctor of Technical Sciences, Professor of the Aerodynamics, Airframe and Strength of Aircraft Chair
V. I. Shevyakov
Russian Federation
Vladimir I. Shevyakov, Doctor of Technical Sciences, the Head of the Aerodynamics Performance Department,
References
1. Shevyakov, V.I. (2014). Resheniye novykh zadach aerodinamiki v protsesse sertifikatsii samoletov transportnoy kategorii – protivoobledenitelnaya sistema [The solution of new problems of aerodynamics in the course of certification of transport planes category — an anti-icing system]. The Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 199, pp. 74–82. (in Russian)
2. Prakticheskiye aspekty resheniya zadach vneshney aerodinamiki dvigateley LA v ramkakh osrednennykh po vremeni uravneniy Navie-Stoksa [Practical aspects of the solution of problems of external aerodynamics of AC engines within Navier-Stokes's equations, average on time]. (2007). Trudy TSAGI [Proceedings of TsAGI], iss. 2671, pp. 3–19. (in Russian)
3. Dolotovskiy, A.V., Terekhin, V.A., Shevyakov, V.I. and Chochiev, V.A. (2012). Zadachi aerodinamiki pri sertifikatsii samoleta SSJ-100 dlya usloviy obledeneniya [Problems of aerodynamics at certification of the SSJ-100 for ice conditions]. Materialy XXIII Nauchno-tekhnicheskoy konferentsii po aerodinamike, p. Volodarskogo, 01–02 marta 2012 [Materials of XXIII scientific and technical conference on aerodynamics], p. 95. (in Russian)
4. Wright, W.B. (1995). Users’ manual for the improved NASA Lewis ice accretion code LEWICE 1.6. NASA Contractor Report 198355. June. 97 p.
5. Gent, R.W. (1990). TRAJICE2 – A combined water droplet trajectory and ice accretion prediction program for airfoil. RAE TR 90054. Farnborough, Hampshire, 83 p.
6. Tran, P., Brahimi, M.T., Paraschivoiu, I., Pueyo, A. and Tezok, F. (1994). Ice accretion on aircraft wings with thermodynamic effects. 32nd Aerospace Sciences Meeting & Exhibit, Reno, Nevada, AIAA-1994-0605. American Institute of Aeronautics and Astronautics, p. 9.
7. Mingione, G. and Brandi, V. (1998). Ice accretion prediction on multielement airfoils. Journal of Aircraft, vol. 35, no. 2, March – April, pp. 240–246.
8. Beaugendre, H., Morency, F. and Habashi, W.G. (2002). ICE3D, FENSAP-ICE’S 3D In-flight ice accretion module. 40th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, AIAA 2002-0385. American Institute of Aeronautics and Astronautics, p. 18.
9. Prikhod’ko, A.A. and Alekseenko, S.V. (2016). Ekspirimentalnoye issledovaniye i matematicheskoye modelirovaniye fizicheskikh protsessov pri obledenenii aerodinamicheskikh poverkhnostey [Experimental research and mathematical modeling of physical processes in сase of aerodynamic surfaces icing]. XV Minskiy mezhdunarodnyy forum po teplo- i massoobmenu, Minsk, 23–26 Maya 2016 g. T. 1. [The XV Minsk international forum on a heat and mass exchange]. Tezisy dokladov i soobshcheniy, pp. 386–389. (in Russian)
10. Alekseenko, S.V. and Prikhod’ko, A.A. (2014). Mathematical modeling of ice body formation on the wing airfoil surface. Fluid Dynamics, vol. 49, no. 6, pp. 715–732.
11. Cao, Y., Huang, J. and Yin, J. (2016). Numerical simulation of three-dimensional ice accretion on an aircraft wing. Journal of heat and mass transfer, vol. 92, pp. 34–54.
12. Zhu, C., Fu, B. and Sun, Z. (2012). 3D ice accretion simulation for complex configuration basing on improved messing model. Intern. Journal of modern physics: Conference Series, vol. 19, pp. 341–350.
Review
For citations:
Tsipenko V.G., Shevyakov V.I. PROMOTION OF TRANSPORT AIRСRAFT FLIGHT SAFETY TAKING INTO ACCOUNT UPDATED CERTIFICATION REQUIREMENTS FOR ICING CONDITIONS. Civil Aviation High Technologies. 2019;22(3):45-56. (In Russ.) https://doi.org/10.26467/2079-0619-2019-22-3-45-56