ALGORITHM OF MESH DEFORMATION FOR ACCOUNTING CYCLIC BLADE CONTROL AND BLADES FLAPPING IN THE PROBLEM OF HELICOPTER MAIN ROTOR MODELING
https://doi.org/10.26467/2079-0619-2019-22-2-62-74
Abstract
About the Author
V. A. VershkovRussian Federation
Vladislav A. Vershkov, Junior Research Fellow of Scientific and Research Department No 5 of Central Aerohydrodynamic Institute, Postgraduate of the Moscow Institute of Physics and Technology (State University)
Zhukovsky
References
1. Jothiprasad, G., Mavriplis, D.J. and Caughey, D.A. (2003). Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes. Journal of Computational Physics, vol. 191, iss. 2, Nov., pp. 542–566.
2. Yang, Zhi and Mavriplis, D.J. (2007). Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA Journal, vol. 45, no. 1, Jan., pp. 138–150.
3. Mavriplis, D.J. (1996). Mesh generation and adaptivity for complex geometries and flows. In: Peyret R. Handbook of Computational Fluid Mechanics. Elsevier Science & Technology Books, pp. 417–459.
4. Batina, J.T. (1990). Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA Journal, vol. 28, no. 8, Aug., pp. 1381–1388.
5. Cizmas, P. and Gargoloff, J.I. (2008). Mesh generation and deformation algorithm for aeroelastic simulations. Journal of Aircraft, vol. 45, no. 3, May, pp. 1062–1066.
6. Duvigneau, R. and Visonneau, M. (2001). Shape optimization of incompressible and turbulent flows using the simplex method. 15th AIAA Computational Fluid Dynamics Conference, number AIAA 2001-2533, Reston, Virigina, 11–14 June 2001. American Institute of Aeronautics & Astronautics.
7. Farhat, C., Degand, C., Koobus, B. and Lesoinne, M. (1998). An improved method of spring analogy for dynamic unstructured fluid meshes. 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA 1998–2070, 20–23 April 1998.
8. Gordon, W.J. and Thiel, L.C. (1982). Transfinite mappings and their application to grid generation. Applied Mathematics and Computation, vol. 10–11, Jan., pp. 171–233.
9. Buhmann, M.D. (2003). Radial basis functions: theory and implementations. New York: Cambridge University Press.
10. Wendland, H. (2004). Scattered Data Approximation. Cambridge: Cambridge University Press.
11. Allen, C.B. and Rendall, T.C.S. (2007). Unified Approach to CFD-CSD interpolation and mesh motion using radial basis functions. 25th AIAA Applied Aerodynamics Conference, AIAA 2007–3804, 25–28 June 2007.
12. Rendall, T.C.S. and Allen, C.B. (2008). Unified fluid-structure interpolation and mesh motion using radial basis functions. International Journal for Numerical Methods in Engineering, vol. 74, no. 10, pp. 1519–1559.
13. Ling, L. and Schaback, R. (2008). Stable and Convergent unsymmetric meshless collocation methods. SIAM Journal on Numerical Analysis, vol. 46, no. 3, pp. 1097–1115.
14. Lee, T., Leok, M. and McClamroch, N.H. (2011). Geometric numerical integration for complex dynamics of tethered spacecraft. Proceedings of the 2011 American Control Conference, March, pp. 1885–1891.
15. Sarra, S.A. and Kansa, E.J. (2009). Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations, 206 p.
16. Freitag, L.A. (1997). On combining laplacian and optimization-based smoothing techniques. Proc. Symp. Trends in Unstructured Mesh Generation, Jun, pp. 37–44.
17. Dougherty, F.C., Benek, J.A. and Steger, J.L. (1985). On applications of chimera grid schemes to store separation. National Aeronautics and Space Administration, Ames Research Center, Moffett Field, 14 p.
18. Meakin, R. (1997). On adaptive refinement and overset structured grids. 13th Computational Fluid Dynamics Conference, AIAA 1997-1858, Jun, pp. 236–249.
19. Renzoni, P., D’Alascio, A., Kroll, N., Peshkin, D., Hounjet, M.H.L., Boniface, J.-C., Vigevano, L., Allen, C.B., Badcock, K., Mottura, L., Scholl, E. and Kokkalis, A. (2000). EROS a common European Euler code for the analysis of the helicopter rotor flowfield. Progress in Aerospace Sciences, vol. 36, no. 5–6, pp. 437– 485.
20. Pomin, H. and Wagner, S. (2004). Aeroelastic analysis of helicopter rotor blades on deformable chimera grids. Journal of Aircraft, vol. 41, no. 3, May-June, pp. 577–584.
21. Rumsey, C.L. (1997). Computation of acoustic waves through sliding-zone interfaces. AIAA Journal, vol. 35, no. 2, Feb., pp. 263–268.
22. Steijl, R. and Barakos, G. (2008). Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics. International Journal for Numerical Methods in Fluids, vol. 58, no. 5, Oct., pp. 527–549.
23. Fenwick, C.L. and Allen, C.B. (2006). Development and validation of sliding and non-matching grid technology for control surface representation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 220, iss. 4, Jan., pp. 299–315.
Review
For citations:
Vershkov V.A. ALGORITHM OF MESH DEFORMATION FOR ACCOUNTING CYCLIC BLADE CONTROL AND BLADES FLAPPING IN THE PROBLEM OF HELICOPTER MAIN ROTOR MODELING. Civil Aviation High Technologies. 2019;22(2):62-74. (In Russ.) https://doi.org/10.26467/2079-0619-2019-22-2-62-74