SIMULATION RESULTS OF SPECKLE SUPPRESSION IN RADAR WITH SYNTHETIC APERTURE
https://doi.org/10.26467/2079-0619-2019-22-1-76-82
Abstract
The disadvantage of (RLI) radar images obtained with a single-channel radar station is the presence of speckle that leads to intensity flashes increasing the number of false alarms when detecting point targets. Therefore, the detection and target distinguishing by their reflective capability (using the energy characteristics of the signal) is not effective enough. In polarimetric radar stations the formation of each image element is carried out by the output signals of four receiving channels. Joint processing of these signals allows minimizing speckle without reducing the resolution capability. The paper presents the results of the computer simulation of the suppression methods of the image speckle obtained in the polarized radar stations with the synthesized antenna aperture. The first one uses the norm of the backscattering matrix as a parameter of the intensity of the reflected signal resolution from the i-th element. The incoherent addition of the intensities obtained by sequential overview of the space with several rays is carried out in the second one. Both of these methods can be applied together. The block diagram of such processing for one strip of range is given. The computer simulation of the three-rayed suppression method of the image speckle obtained in the radar stations with the synthesized antenna aperture is carried out. As a model of the reflecting surface a random diffraction grating formed by a set of independent reflectors located at the nodes of a regular rectangular grid with a step of 1 m is chosen. In this connection the image of the grating is formed as an incoherent sum of three images obtained at different angles. The results show that the speckle effect reduces even at angular changes of the order of degree units.
About the Authors
R. N. AkinshinRussian Federation
Ruslan N. Akinshin - Doctor of Technical Sciences, Associate Professor, Leading Researcher.
MoscowV. L. Rumyantzev
Russian Federation
Vladimir L. Rumyantzev - Doctor of Technical Sciences, Professor, Deputy Head of Department of JSC CDBAE.
Tula
A. V. Peteshov
Russian Federation
Andrey V. Peteshov - Candidate of Technical Sciences, Associate Professor, Head of the CWWIURE Chair
References
1. Vasile, G., Trouve, E., Lee, J.S. and Buzuloiu, V. (2006). Intensity-driven adaptive neighborhood technique for polarimetric and interferometric parameter estimation. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 6, June, pp. 1609-1621.
2. Lee, J.S., Schuler, D.L., Grunes, M.R., Pottier, E. and Ferro Famil, L. (2006). Scattering model based speckle filtering of polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 1, January, pp. 176-187.
3. Kozlov, A.I., Logvin, A.I. and Sarychev, V.A. (2008). Polyarizatsiya radiovoln. Kn. 3 Radiopolyarimetriya slozhnykh po strukture signalov [Polarization of radio waves. V. 3. Radio-polarimetry of complicated structure signals]. Moscow: Radiotekhnika, Radio Engineering, 688 p. (in Russian)
4. Akinshin, N.S., Rumiantsev, V.L. and Khomyakov, V.A. (2016). Algoritmy ob-naruzheniya obyektov v polyarizatsionnikh RLS [Algorithms of object detection in the polarized radars]. Izvestiya TulGU. Ser. Tekhnicheskiye nauki [Proceedings of the Tula State University. Ser. Engineering Sciences], iss. 2, pp. 14-21. (in Russian)
5. Giuli, D., Fossi, M. and Facheris, L. (1993). Radar target scattering matrix measurement through orthogonal signals. IEE Proceedings F - Radar and Signal Processing, vol. 140, no. 4, August, pp. 233-242.
6. Claude, S.R. and Pottier, E. (1997). An entropy-based classification scheme for land applications of polarimetric SAR IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 1, pp. 68-78.
7. Freeman, A., Saillard, J., Pottier, E. and Boerner, W.M. (1992). Classification or multifrequency. Multi-temporal polarimetric SAR images of natural vegetation. Eds. Proc. JIPR-2. 1992 Sepl. 8-10. IRESTE. U. Nantes, Brelagne, France, pp. 272-288.
8. Akinshin, N.S., Varenitsa, Y.I. and Khomyakov, K.A. (2016). Sovmestnaya otsenka koordinatnikh i polyarizatsionnikh parametrov radiolokatsionnikh obyektov [Joint estimation of the coordinate and the polarized parameters of radar objects]. Izvestiya TulGU. Ser. Tekhnicheskiye nauki [Izv. The Tula State University. Ser. Technical Sciences], iss. 2, pp. 3-14. (in Russian).
9. Varenitsa, Y.I. and Rumyantsev, V.L. (2016). Otsenka dostovernosti modelnoy rekon-struktsii izobrazheniya tochechnikh obyektov metodom pryamolineynogo sinteza apertury [Assessment of the reliability of the model image reconstruction of point objects by the method of straight-line aperture synthesis]. Izvestiya TulGU. Ser. Tekhnicheskiye nauki [Proceedings of the Tula State University. Ser. Engineering Sciences], iss. 7, part 1, pp. 184-191. (in Russian).
Review
For citations:
Akinshin R.N., Rumyantzev V.L., Peteshov A.V. SIMULATION RESULTS OF SPECKLE SUPPRESSION IN RADAR WITH SYNTHETIC APERTURE. Civil Aviation High Technologies. 2019;22(1):76-82. (In Russ.) https://doi.org/10.26467/2079-0619-2019-22-1-76-82