Preview

Civil Aviation High Technologies

Advanced search

Determination of the location of air objects in polistatic radar system parasitising on radiation telecommunication systems

https://doi.org/10.26467/2079-0619-2018-21-5-105-116

Abstract

Currently, in areas of large cities there is a steady trend towards an increase in the spatial density of telecommunications systems. Saturation of the radio spectrum with analogue and digital systems used to solve problems of radio communication and television allows on their basis improving the technologies for semi-active radar detecting and determining the coordinates of air objects. The introduction of radar surveillance using transmitters not intended for radar purpose is often called a semi-active radar using outside or “parasitic” emission sources. The advantages of the systems are the minimization of the deployment costs, low operational energy costs, a low probability of establishing distortions, stealth operation, environmental friendliness and lack of requirements for radio frequency resource allocation.  The relatively large elevations of the antennas of communication and television transmitters with the existing emitted power create favorable conditions for the detection of low altitude air objects. The digital signals of modern telecommunications systems have a spectrum width that provides acceptable resolution and accuracy for measuring the full range and angular coordinates. In general, a system of this type is a poly-static (multi-static) system consisting of one or more radiation sources and one or more receiving positions scattered in space. The promising task such systems solve along with airspace control is air traffic control. The article considers options for determining the rectangular coordinates of air objects in a system of bistatic radar stations using radio emission from external sources for target detection. The variants of the location of air objects with different composition of primary measurements of coordinates and a number of transmitting positions are considered. Analytical expressions are given for calculating the projections of the target velocity vector on the axis of the Cartesian coordinate system. The accuracy of airborne positioning for multi-static radar systems of this type is estimated.

About the Author

E. G. Borisov
The Bonch-Bruevich Saint-Petersburg State University of Telecommunication (SUT)
Russian Federation

Evgeny G. Borisov - Doctor of Technical Sciences, Associate Professor, Leading Specialist on the Implementation of Investment and Scientific Technical Projects



References

1. Bendjama, L. and Laroussi, T. (2018). GLRT-based passive bistatic radar: A performance comparison of illuminators of opportunity. 2018 International Conference on Advanced Systems and Electric Technologies (IC ASET). pp. 54–59. DOI:10.1109/ASET.2018.8379834.

2. Capria, A., Petri, D., Martorella, M., Conti, M., Dalle Mese, E. and Berizzi, F. (2010). DVB-T passive radar for vehicles detection in urban environment. 2010 IEEE International Geoscience and Remote Sensing Symposium, pp. 3917–3920. DOI:10.1109/IGARSS.2010.5649675.

3. Howland, P.E., Maksimiuk, D. and Reitsma, G. (2005). FM radio based bistatic radar. IEE Proceedings – Radar, Sonar and Navigation, рр. 107–115. DOI:10.1049/ip-rsn:20045077.

4. Zaimbashi, A., Derakhtian, M. and Sheikhi, A. (2014). Invariant Target Detection in Multiband FM-Based Passive Bistatic Radar. IEEE Transactions on Aerospace and Electronic Systems, pp. 720–736. DOI:10.1109/TAES.2013.120248.

5. Conti, M., Berizzi, F., Martorella, M., Dalle Mese, E., Petri, D. and Capria, A. (2012). High range resolution multichannel DVB-T passive radar. IEEE Aerospace and Electronic Systems Magazine, pp. 37–42.

6. Conti, M., Petri, D., Capria, A., Martorella, M., Berizzi, F. and Dalle Mese, E. (2011). Ambiguity function sidelobes mitigation in multichannel DVB-T Passive Bistatic Radar. 12th International Radar Symposium (IRS), pp. 339–344.

7. Christiansen, J.M. and Olsen, K.E. (2010). Range and Doppler walk in DVB-T based Passive Bistatic Radar. IEEE Radar Conference, pp. 620–626. DOI:10.1109/RADAR.2010.5494548.

8. Samczyński, P., Wilkowski, M. and Kulpa, K. (2012). Trial results on bistatic passive radar using non-cooperative pulse radar as illuminator of opportunity. INTL – International Journal of Electronics and Telecommunications, pp. 171–176.

9. Honda, J. and Otsuyama, T. (2016). Feasibility study on aircraft positioning by using ISDB-T signal delay. EEE Antennas and Wireless Propagation Letter, pp. 1787–1790.

10. Krysik, P., Wielgo, M., Misiurewicz, J. and Kurowska, A. (2014). Doppler-only tracking in GSM-based passive radar. 17th International Conference on Information Fusion (FUSION), pp. 1–7.

11. Howland, P.E. (1999). Target tracking using television-based bistatic radar. IEE Proceedings – Radar, Sonar and Navigation, pр. 166–174.

12. Salah, A., Raja Abdullah, R.S.A., Ismail, A., Hashim, F. and Abdul Aziz, N.H. (2014). Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications. Electronics Letters, pp. 545–547. DOI:10.1049/el.2014.0237.

13. Averyanov, V.Ya. (1978). Raznesennye radiolokatsionnye stantsii i sistemy [Separated radar stations and systems]. Minsk: Tekhnika, 1978, 148 p. (in Russian)

14. Chernyak, V.S. (1993). Mnogopozitsionnaya radiolokatsiya [Multi-position Radiolocation], Moscow: Radio i Svyaz, 1993, 416 p. (in Russian)

15. Okhrimenko, A.E. (1990). Osnovy obrabotki i peredachi informatsii [Fundamentals of information processing and transmission]. Minsk: MVIZRU PVO, 1990, 180 p. (in Russian)

16. Borisov, E.G. and Poddubnyy, S.S. (2017). Primenenie prostranstvenno-vremennykh signalov dlya opredeleniya koordinat tselei v bistaticheskoy lokatsionnoy sisteme [Application of space-time signals for the determination of target coordinates in a bistatic location system]. Voprosy radioelektroniki [Problems of radio-electronics], no. 1, рр. 9–14. (in Russian)

17. Mashkov, G.M., Borisov, E.G. and Vladyko, A.G. (2015). Analiz tochnosti opredeleniya mestopolozheniya obyektov dalnomernymi sistemami razlichnogo tipa [Analysis of Object Positioning Accuracy provided by range-finding systems of various types]. Russian Aeronautics, pp. 401–406. DOI: 10.3103/S1068799815040078. (in Russian)

18. Kulpa, K. and Malanowski, M. (2012). Two Methods for Target Localization in Multistatic Passive Radar. IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 1, pp. 572–580. DOI:10.1109/TAES.2012.6129656.

19. Mellen, G., Pachter, M. and Raquet, J. (2003). Closed-form solution for determining emitter location using time difference of arrival measurements. IEEE Transactions on Aerospace and Electronic Systems, July, pp. 1056–1058. DOI:10.1109/TAES.2003.1238756.

20. Shirman, Ya.D. and Manzhos, V.N. (1981). Teoriya i tekhnika obrabotki radiolokatsionnoy informatsii na fone pomekh [Theory and technique of processing radar information against background noise]. Moscow: Radio i svyaz, 416 p. (in Russian)

21. Kuzmin, S.Z. (1974). Osnovy teorii tsifrovoy obrabotki radiolokatsionnoy informatsii [Fundamentals of the theory of digital processing of radar information]. Moscow: Sov. Radio, 432 p. (in Russian)


Review

For citations:


Borisov E.G. Determination of the location of air objects in polistatic radar system parasitising on radiation telecommunication systems. Civil Aviation High Technologies. 2018;21(5):105-116. (In Russ.) https://doi.org/10.26467/2079-0619-2018-21-5-105-116

Views: 948


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)