Preview

Civil Aviation High Technologies

Advanced search

Definition in testing for the probability of exit of the aircraft in informational contact with air objects

https://doi.org/10.26467/2079-0619-2018-21-5-78-93

Abstract

The article presents a methodology for determining the probability of aircraft information contacting airborne objects within flight test procedures. The methodology is based on the experimental-theoretical test method, based on the application of mathematical modeling. The technique differs from the known ones in that it uses modern information technologies, and the adopted mathematical model is implemented in the form of a computer program. In addition, detecting the given performance indicator in flight experiments is inappropriate because of significant resource costs. This technique is suitable for practical testing purposes and allows determining the aircraft efficiency index when searching air objects – the probability of an information contact with a typical air facility. The presented computer program provides the performance of calculations of the output index for different values and combinations of factors influencing the result. The simulation was performed and the probabilities of the aircraft information contact with typical airborne objects under given conditions were obtained. The results of the influence research on the probability of groups of factors outlet into information contact: the aircraft and the air object characteristics, the quality of the initial information about it, search conditions are presented. As a result of the work, the main regularities are established when solving the problem of the aircraft information contact with an air object. The computer program created within the methodology framework has a modern graphical interface and allows reducing the time spent by the researcher on the processing of test results. The developed technique allows performing a comparative assessment of the aircraft capabilities to detect airborne objects in tests.

About the Authors

S. V. Nikolaev
1929 State Flight Test Center of the Ministry of Defense of the Russian Federation
Russian Federation

Sergey V. Nikolaev - Candidate of Technical Sciences, Deputy Head of the Research and Test Department.

Akhtubinsk


A. A. Tikhonov
1929 State Flight Test Center of the Ministry of Defense of the Russian Federation
Russian Federation

Albert A. Tikhonov - Test Engineer of the Research and Test Department.

Akhtubinsk


D. S. Merencov
1929 State Flight Test Center of the Ministry of Defense of the Russian Federation
Russian Federation

Dmitry S. Merentsov - Test Engineer of the Research and Test Department.

Akhtubinsk



References

1. Nikolaev, S.V. (2017). Opredelenie v ispytaniyakh veroyatnosti obnaruzheniya nazemnykh obektov s borta letatelnogo apparata [Determination in the tests of the probability of detecting ground objects from the aircraft]. Civil Aviation High Technologies, vol. 20, no. 5, pp. 131–144. (in Russian)

2. Bobkov, A.E. and Leonov, A.V. (2015). Procedurnaya rekonstruktsiya territorij na virtualnom globuse [Procedural reconstruction of territories on a virtual globe]. Vestnik kompyuternikh i informatsionnikh tekhnologiy [Herald of computer and information technologies], no. 11, pp. 10–17.

3. Korsun, O.N. and Semenov, A.V. (2006). Metodika opredeleniya kharakteristik ustoychivosti i upravlyaemosti samoleta M-55 «Geofizika» [Methodology for determining the stability and handling characteristics of the M-55 Geophysics aircraft]. Polet [Flight], 2006, no. 2. pp. 23–29.

4. Pushkov, S.G., Gorshkova, O.Yu. and Korsun, O.N. (2013). Matematicheskie modeli pogreshnostey bortovykh izmereniy skorosti i ugla ataki na rezhimakh posadki samoleta [Mathematical models of errors in on-board measurements of speed and angle of attack on aircraft landing modes]. Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, Automation, Control], no. 8, pp. 66–70. (in Russian)

5. Shildt, G. (2006). Polnyy spravochnik po C# [Full reference on C #]. Per. s angl. [Transl. from English]. Moscow: Williams, 752 p. (in Russian)

6. Shildt, G. (2011). C# 4.0 [C # 4.0]. Polnoe rukovodstvo [A Complete Guide]. Per. s angl. [Transl. from English]. Moscow: Williams, 1056 p. (in Russian)

7. Watson, K., Nagel, C., Pedersen, J.H., Reed, J.D. and Skinner, M. (2010). Visual C# 2010 [Visual C # 2010]. Polnyy kurs [Full Course]. Per. s angl. [Transl. from English]. Moscow: Dialectics, 960 p. (in Russian)

8. Pettsold, Ch. (2018). Programmirovanie s ispolzovaniem Microsoft Windows Forms. Master-klass [Programming with Microsoft Windows Forms. Master Class]. Per. s angl. [Transl. from English]. St. Petersburg: Piter, 2006. 432 p.

9. Venttsel E.S. (2010). Issledovanie operatsyy: zadachi, printsypy, metodologiya [Research of operations: tasks, principles, methodology]. Мoscow: Knorus, 192 p. (in Russian)

10. Abchuk, V.A. and Suzdal, V.G. (1977). Poisk obektov [Search for objects]. Moscow: Soviet Radio, 336 p. (in Russian)

11. Arbuzov, I.V. and Bolkhovitinov, O.V. (2008). Boevye aviatsionnye kompleksy i ikh effektivnost [Combat aviation complexes and their effectiveness]. Moscow: VVIA prof. N.E. Zhukovsky, 224 p. (in Russian)

12. Sebryakov, G.G., Tatarnikov, I.B., Tyuflin, Ju.S., Skryabin, S.V. and Tarnovskiy, A.V. (2006). Printsipy sozdaniya universalnykh sistem vizualizatsii kompleksov modelirovaniya dlya zadach obucheniya, situatsionnogo analiza i trenazha [The principles of creating universal systems for visualization of modeling complexes for learning tasks, situational analysis and training]. Vestnik kompyuternikh i informatsionnikh tekhnologiy [Herald of Computer and Information Technologies], no. 3, pp. 48–50. (in Russian)

13. Sebryakov, G.G., Zheltov, S.Ju. and Tatarnikov, I.B. (2003). Kompyuternye tekhnologii sozdaniya geoprostrastvennykh trekhmernykh stsen, ispolzuyuschikh kompleksirovanie geograficheskoy informatsii i sintezirovannykh polzovatelskikh dannykh [Computer technologies for creation of geo-spatial three-dimensional scenes using the combination of geographic information and synthesized user data]. Aerospace instrument making, no. 8, pp. 2–10. (in Russian)

14. Skopets, G.M. (2017). Vneshnee proektirovanie aviatsionnykh kompleksov: Metodologicheskie aspekty [External design of aviation complexes: Methodological aspects]. Moscow: URSS, 344 p. (in Russian)

15. Aviaciya PVO Rossii i nauchno-tekhnicheskiy progress: boevye kompleksy i sistemy vchera, segodnya, zavtra [Aviation of the Air Defense of Russia and scientific and technical progress: combat complexes and systems yesterday, today, tomorrow]. (2004). Monograph. 2nd ed., stereotype. Ed. E.E. Fedosov. Moscow: Drofa, 816 p. (in Russian)

16. Abergauz, G.G., Tron, A.P., Kopenkin, Yu.I. and Korovina, I.A. (1970). Spravochnik po veroyatnostnym raschetam [Handbook of Probabilistic Calculations]. Moscow: Voenizdat, 536 p. (in Russian)

17. Venttsel, E.S. (1969). Teoriya veroyatnostey [Probability theory]. Moscow: Nauka, 576 p. (in Russian)

18. Milgramm, Yu.G. (1974). Tablitsy i grafiki dlya veroyatnostnykh raschetov. Part 1. [Tables and graphs for probabilistic calculations. Part 1]. Moscow: VVIA, 381 p. (in Russian)

19. Korsun, O.N. and Poplavskiy, B.K. (2007). Struktura metodologii identifikatsii matematicheskikh modeley samoletov po rezultatam letnykh ispytaniy [The structure of the methodology for the identification of mathematical models of airplanes based on the results of flight tests]. In the collection: Aviation technologies of the XXI century. IX International Scientific and Technical Symposium ASTEC'07. 2007. (in Russian)

20. Ovcharenko, V.N. (2011). Adaptivnaya identifikatsiya parametrov v dinamicheskikh i staticheskikh sistemakh [Adaptive identification of parameters in dynamic and static systems]. Automation and Remote Control, no. 3, pp. 113–123. (in Russian)

21. Korsun, O.N. and Nikolaev, S.V. (2016). Identifikatsiya aerodinamicheskikh koeffitsientov samoletov v ekspluatatsionnom diapazone uglov ataki [Identification of aerodynamic coefficients of aircraft in the operational range of attack angles]. Vestnik kompyuternikh i informatsionnikh tekhnologiy [Herald of Computer and Information Technologies], no. 9, pp. 3–10. (in Russian)

22. Nikolaev, S.V. and Snegireva, I.V. (2018). Programmno-apparatnyy kompleks dlya issledovaniy i otsenivaniya v ispytaniyakh kharakteristik aviatsionnykh kompleksov [Software and hardware complex for research and evaluation in testing the characteristics of aviation complexes]. Aerospace instrument making, no. 3, pp. 22–36. (in Russian)


Review

For citations:


Nikolaev S.V., Tikhonov A.A., Merencov D.S. Definition in testing for the probability of exit of the aircraft in informational contact with air objects. Civil Aviation High Technologies. 2018;21(5):78-93. (In Russ.) https://doi.org/10.26467/2079-0619-2018-21-5-78-93

Views: 607


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)