Preview

Civil Aviation High Technologies

Advanced search

MODEL AND ALGORITHM FOR CALCULATION OF THE RADAR SIMULATOR OBJECT EFFECTIVE SQUARE OF SCATTERING

https://doi.org/10.26467/2079-0619-2017-20-6-141-151

Abstract

To reduce the cost of field tests of the ballistic objects (BO) simulators reflection properties, it is advisable to develop a model and algorithm for calculation of the radar objects effective surface scattering. As a simulator of ballistic objects a complex radar reflector, made of a lossfree dielectric is chosen. It looks like a spherical Luneburg lens with a coating of high-conductivity alloy as well as a truncated cone, disk, and cylindrical elements. The stages of aperture version of reflection from the inner surface of the Luneburg lens are proposed. A physical model of the reflection on the elements of design and the technique of modeling with a calculation algorithm of the effective surface scattering are developed. The algorithm of calculation of the ballistic objects resonance effective surface scattering is worked out. This algorithm is presented in a graphical form. The interface of the computing complex is presented. As a simulator of ballistic object we selected a complex radar reflector, made of a lossfree dielectric sphere with a coating of high-conductivity alloy as well as of a truncated cone, disk, and cylindrical elements. The comparative indicatrices of ballistic objects simulator are presented. The conclusion on the comparative analysis of the results of measurements in situ and modeling results is made. The examples of numerical calculations of the ESR of the head part of the BO simulator with increased ESR and increased all-aspect view are given. The options of the BO simulator head parts with increased ESR and increased all-aspect view with optimal placement of radar dielectric reflector and a corner unit with sectional placement of dielectric reflectors are analyzed.

About the Authors

R. N. Akinshin
SSP RAS.
Russian Federation

Ruslan N. Akinshin, Doctor of Technical Sciences, Associate Professor, Senior Researcher.

Moscow.



A. A. Bortnikov,
CDBAE.
Russian Federation

Andrey A. Bortnikov, Leading Engineer. 

Tula.



S. M. Tsibin
CDBAE.
Russian Federation

Stanislav M. Tsibin, Leading Engineer. 

Tula.



Yu. I. Mamon
CDBAE.
Russian Federation

Yury I. Mamon, Doctor of Technical Sciences, Chief Specialist. 

Tula.



E. I. Minakov
Tula state University.
Russian Federation

Evgeny I. Minakov, Doctor of Technical Sciences, Associate Professor, Professor. 

Tula.



References

1. Radioelektronnye sistemy. Osnovy postroeniya. Spravochnik [Radio electronic systems. Fundamentals of construction and theory. Handbook ed. Ya.D. Shirman]. М., Joint-Stock Company "Makvis", 1998, 825 p. (in Russian)

2. Stager E.A. Rasseyanie radiovoln na telach slozhnoy formy [Scattering of radio waves on bodies of complex shape]. M., Radio and Communication, 1986, 183 p. (in Russian)

3. Makarovets N.A., Sebyakin A.Yu. Izmerenie effektivnoy ploschadi rasseyaniya golovnoy chasti imitatora vozdushnoy tseli [Measurement of the effective scattering area of the head part of the air target simulator]. [Collection of theses of the reports of the XXIV scientific session dedicated to Radio Day]. Tula, Tula State University, 2006, pp. 176–179. (in Russian)

4. Sullivan D.M. Electromagnetic Simulation Using the FDTD Method. NY, IEEE Press, 2000, 165 p.

5. Taflove A., Hagness S. Computational Electrodynamics: The Finite-Difference TimeDomain Method. NY, Artech House, 2000, 467 p.

6. Gibbson D. The Method of Moments in Electromagnetics. NY, Chapman & Hall CRC, 2008, 594 p.

7. Ufimtsev P.Ya. Osnovy fizicheskoy teorii difraktsii [Fundamentals of the physical theory of diffraction]. M., Binom, 2009, 352 p. (in Russian)

8. Millimetrovaya radiolokatsiya: metody obnaruzheniya I navedeniya v usloviyah estestvennyh I organizovannyh pomeh [Millimeter radar: methods of detection and guidance in conditions of natural and organized interference]. A.B. Borzov [and others]. M., Radiotekhnika, 2010, 376 p. (in Russian)

9. Metody sinteza geometricheskih modeley slozhnyh radiolokatsionnyh ob’ektov [Methods of synthesis of geometric models of complex radar objects]. A.B. Borzov [and others]. Elektromagnitnye volny I elektronnye sistemy [Electromagnetic waves and electronic systems], 2003, № 5, pp. 55–63. (in Russian)

10. Antifeyev V.N., Borzov A.B., Suchkov V.B. Fizicheskie modeli radiolokatsionnyh poley rasseyaniya ob’ektov slozhnoy formy [Physical models of the radar fields of scattering of objects of complex shape]. M., MSTU n. N.E. Bauman, 2003, 61 p. (in Russian)

11. Kobak V.O. Radiolokatsionnye otrazhateli [Radiolocation convolutions]. M., Soviet radio, 1975, 244 p. (in Russian)

12. Maisels E.N., Torgovanov V.A. Izmerenie harakteristik rasseyaniya radiolokatsionnyh tseley [Measurement of the characteristics of the scattering of radiolocation targets]. M., Soviet radio, 1972, 232 p. (in Russian)

13. Teoreticheskie i eksperimentalnye issledovaniya polyarizatsionnyh harakteristik dvugrannyh struktur [Theoretical and experimental studies of the polarization characteristics of dihedral and trihedral concave structures]. Borzov A.B. [and others]. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic waves and electronic systems, 2010, Vol. 15, no. 7, pp. 27–40.

14. Akinshin N.S., Amirbekov E.A., Bystrov R.P., Khomyakov A.V. Obnaruzhenie gruppovoy vozdushnoy tseli po uglovomu shumu [Detection of a group air target for angular noise]. Radiotechnika [Journal of Radio Engineering], 2014, no. 12, pp.70–76. (in Russian)


Review

For citations:


Akinshin R.N., Bortnikov, A.A., Tsibin S.M., Mamon Yu.I., Minakov E.I. MODEL AND ALGORITHM FOR CALCULATION OF THE RADAR SIMULATOR OBJECT EFFECTIVE SQUARE OF SCATTERING. Civil Aviation High Technologies. 2017;20(6):141-151. (In Russ.) https://doi.org/10.26467/2079-0619-2017-20-6-141-151

Views: 870


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)