Preview

Civil Aviation High Technologies

Advanced search

TEST DETERMINATION OF PROBABILITY OF AIRBORNE DETECTION OF GROUND SURFACE OBJECTS

https://doi.org/10.26467/2079-0619-2017-20-5-131-144

Abstract

The article presents the methods, mathematical model and its software implementation for calculating the efficiency indicators of visual and hardware search and detection of ground objects from the aircraft. The methods differ from the known ones in that they use modern information technologies and are adapted to solve practical test problems. In addition, finding values of the visual detection probability of ground objects in full-scale experiments is unrealizable due to the huge amount of required expenses. The proposed method allows estimating a particular efficiency indicator of an aircraft when searching for ground objects in the flight tests – the yield on a generic object. The developed mathematical model takes into account the known range of object detection by its linear dimensions. The software implementation allows performing calculations for different values of the meteorological situation. The convergence of simulation results and flight experiments is estimated. To determine the convergence, the results obtained in real flight tests on proof ground with different meteorological conditions were compared with the results of calculations obtained by modeling. The relative discrepancy between the indicators obtained in the flight experiment and calculated by the developed program is less than 5%.

The author proposes new private efficiency indicators for the visual detection task of typical ground objects. This is the area of possible detection of the ground object and the area of guaranteed access to it. These indicators allow performing a comparative assessment of the capabilities of aircraft to detect ground objects in tests. These indicators, unlike the known ones, have greater visibility and informational content.

The developed computer program reduces the time spent by the tester on the calculation of indicators and the preparation of materials to the act by 3 times due to automation and usability. It allows us to perform calculations by varying any indicators on which the probability of detecting a typical ground object in the wide range of their change depends on.

About the Author

S. V. Nikolaev
929 State Flight Test Center of the Ministry of Defense of the Russian Federation
Russian Federation

Candidate of Technical Sciences, Deputy Head of the Scientific and Testing Department, 

Akhtubinsk



References

1. Sebrjakov G.G. Harakteristiki dejatel'nosti cheloveka-operatora v dinamicheskih sistemah slezhenija i navedenija letatel'nyh apparatov [Characteristics of human operator in dynamic systems of tracking and guidance of aircraft]. Herald of Computer and Information Technologies, 2007, № 11, pp. 2–8. (in Russian)

2. Sebrjakov G.G. Problemy proektirovanija poluavtomaticheskih sistem navedenija letatel'nyh apparatov [Problems of designing semi-automatic guidance systems for aircraft]. Herald of Computer and Information Technologies, 2007, № 10, pp. 2–7. (in Russian)

3. RPASOP GA-91. Rukovodstvo po poiskovomu i avarijno-spasatel'nomu obespecheniju poletov grazhdanskoj aviacii SSSR [Guide to search and rescue services for civil aviation flights of the USSR]. M., The Ministry of Civil Aviation, 1991, 192p. (in Russian)

4. Ventcel' E.S. Rukovodstvo po poiskovomu i avarijno-spasatel'nomu obespecheniju poletov grazhdanskoj aviacii SSSR [Research of operations: tasks, principles, methodology]. M., KNORUS, 2010, 192 p.

5. Travnikova N.P. Issledovanie operacij: zadachi, principy, metodologija [Efficiency of visual search]. M., Mechanical engineering, 1985, 127 p. (in Russian)

6. Gridchin V.S. Razvitie metodov opredelenija harakteristik samoletov [Development of methods for determining the characteristics of aircraft]. Scientific and Technical Digest No. 1 GLITS them. V.P. Chkalov. Akhtubinsk, 1982, pp. 45–48. (in Russian)

7. Arbuzov I.V., Bolhovitinov O.V. Boevye aviacionnye kompleksy i ih jeffektivnost' [Combat aviation complexes and their effectiveness]. M., Zhukovsky Air Force Engineering Academy, 2008, 224 p. (in Russian)

8. Sebrjakov G.G., Tatarnikov I.B., Tjuflin Ju.S. Principy sozdanija universal'nyh sistem vizualizacii kompleksov modelirovanija dlja zadach obuchenija, situacionnogo analiza i trenazha [The principles of creating universal systems for visualization of modeling complexes for learning tasks, situational analysis and training]. Herald of Computer and Information Technologies, 2006, № 3, pp. 48–50. (in Russian)

9. Korsun O.N., Lavrova G.A., Sebrjakov G.G. Sintez 3D-audiosignalov dlja zvukovogo interfejsa perspektivnoj kabiny letatel'nogo apparata [Synthesis of 3D-audiosignals for the sound interface of a prospective aircraft cabin]. Vseros. scientific-techn. conf. "Modeling of aviation systems": materials of conf. Moscow, FSUE GosNIIAS, 2011, Vol. 3, pp. 452–458. (in Russian)

10. Sebrjakov G.G., Zheltov S.Ju., Tatarnikov I.B. Komp'juternye tehnologii sozdanija geoprostrastvennyh trehmernyh scen, ispol'zujushhih kompleksirovanie geograficheskoj informacii i sintezirovannyh pol'zovatel'skih dannyh [Computer technologies for creation of geo-spatial three-dimensional scenes using the combination of geographic information and synthesized user data]. Aerospace Instrumentation, 2003, № 8, pp. 2–10. (in Russian)

11. Bobkov A.E., Leonov A.V. Procedurnaja rekonstrukcija territorij na virtual'nom globuse [Procedural reconstruction of territories on a virtual globe]. Herald of computer and information technologies, 2015, № 11, pp. 10–17. (in Russian)

12. Korsun O.N., Semenov A.V. Metodika ocenivanija bokovyh otklonenij pri zahode na posadku gidrosamoleta A-40 «Al'batros» po rezul'tatam letnogo jeksperimenta i modelirovanija [Methodology for assessing lateral deviations during the landing of the A-40 "Albatross" seaplane according to the results of the flight experiment and simulation]. Problems of flight safety, 2005, № 7, pp. 14–23. (in Russian)

13. Korsun O.N., Semenov A.V. Metodika opredelenija harakteristik ustojchivosti i upravljaemosti vysotnogo dozvukovogo samoleta M-55 «Geofizika» po rezul'tatam letnogo jeksperimenta i modelirovanija [A technique for determining the stability and controllability characteristics of a high-altitude subsonic aircraft M-55 "Geophysics" based on the results of a flight experiment and modeling]. Polet, 2006, № 2, pp. 22–29. (in Russian)

14. Nikolaev S.V. Ocenivanie ustojchivosti i upravljaemosti aviacionnyh kompleksov s primeneniem modelirovanija i identifikacii [Estimation of the stability and controllability of aviation complexes with the use of modeling and identification]. Aviakosmicheskoe instrument-making, 2015, №10, pp. 71–84. (in Russian)

15. Korsun O.N., Semenov A.V. Ocenka pilotazhnyh harakteristik samoletov po rezul'tatam letnogo jeksperimenta, identifikacii i modelirovanija [Evaluation of the piloting characteristics of aircraft based on the results of the flight experiment, identification and modeling]. Herald of Computer and Information Technologies, 2007, № 7, pp. 2–7. (in Russian)

16. Korsun O.N., Tihonov V.N. Opredelenie pilotazhnyh harakteristik na osnove modelirovanija jekspertnyh ocenok v sisteme «letchik – samolet» [Determination of flight characteristics on the basis of modeling of expert estimates in the "pilot-plane" system]. Information-measuring and control systems, 2008, Vol. 6, № 2, pp. 45–50. (in Russian)

17. Korsun O.N., Poplavskij B.K. Struktura metodologii identifikacii matematicheskih modelej samoletov po rezul'tatam letnyh ispytanij [The structure of the methodology for the identification of mathematical models of airplanes based on the results of flight tests]. Aviation technologies of the XXI century. IX International Scientific and Technical Symposium ASTEC'07. Moscow, 2007. (in Russian)

18. Ovcharenko V.N. Adaptivnaja identifikacija parametrov v dinamicheskih istaticheskih sistemah [Adaptive identification of parameters in dynamic istatic systems]. Automation and telemechanics, 2011, № 3, pp. 113–123. (in Russian)

19. Korsun O.N., Nikolaev S.V. Metodika identifikacii ajerodinamicheskih kojefficientov prodol'nogo dvizhenija samoleta v jekspluatacionnom diapazone uglov ataki [A technique for identifying the aerodynamic coefficients of longitudinal motion of an aircraft in the operational range of attack angles]. Mechatronics, Automation, Control, 2015, Vol. 16, № 4, pp. 269–276. (in Russian)

20. Korsun O.N., Nikolaev S.V. Identifikacija ajerodinamicheskih kojefficientov samoletov v jekspluatacionnom diapazone uglov ataki [Identification of aerodynamic coefficients of aircraft in the operational range of attack angles]. Herald of Computer and Information Technologies, 2016, № 9, pp. 3–10. (in Russian)

21. Nabatchikov A.M., Burlak E.A. Analiz harakteristik dejatel'nosti cheloveka-operatora v dinamicheskom konture slezhenija [Analysis of the characteristics of the human operator in the dynamic tracking loop]. Mechatronics, automation, management, 2013, № 11, pp. 63–66. (in Russian)

22. Sebrjakov G. G., Nabatchikov A. M., Burlak E. A. Konceptual'naja model' ob#ekta upravlenija pri formalizacii dejatel'nosti cheloveka-operatora v dinamicheskom konture slezhenija [A conceptual model of the control object in the formalization of human operator activity in a dynamic tracking loop]. 6th All-Russian Multiconference on Management Problems. Multiconference Proceeding. Rostov-on-Don, The Publishing House of the Southern Federal University, 2013, Vol. 2, pp. 95–100. (in Russian)

23. Evdokimenkov V.N., Kim R.V., Krasil'shhikov M.N. Ispol'zovanie nejrosetevoj modeli upravljajushhih dejstvij letchika v interesah ego individual'no-adaptirovannoj podderzhki [The use of a neural network model of pilot actions in the interests of its individually adapted support]. Izvestiya of Russian Academy of science. Theory and control systems, 2015, № 4, p. 111. (in Russian)


Review

For citations:


Nikolaev S.V. TEST DETERMINATION OF PROBABILITY OF AIRBORNE DETECTION OF GROUND SURFACE OBJECTS. Civil Aviation High Technologies. 2017;20(5):131-144. (In Russ.) https://doi.org/10.26467/2079-0619-2017-20-5-131-144

Views: 893


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-0619 (Print)
ISSN 2542-0119 (Online)