УДК 621.43.018

# ВЛИЯНИЕ ВЕТРА НА РАБОТУ ДВИГАТЕЛЕЙ ПС-90А-76 НА ПРОБЕГЕ САМОЛЁТА ИЛ-76ТД-90 С ПРИМЕНЕНИЕМ РЕВЕРСА ТЯГИ

#### С.С. ФАДИН, А.А. КОМОВ

В статье рассматриваются результаты расчетных исследований о влиянии ветра на работу двигателей ПС-90А-90 на пробеге самолета Ил-76ТД-90 с применением реверса тяги.

Ключевые слова: реверс, ветер, помпаж, расчетные исследования.

Магистральный грузовой самолет Ил-76ТД-90 является глубокой модернизацией транспортного самолета Ил-76ТД. Самолет построен на Ташкентском авиационном производственном объединении им. В.П. Чкалова по заказу группы компаний «Волга-Днепр».

В процессе модернизации самолета силовая установка самолета была заменена — вместо двигателей Д-30КП были установлены двигатели ПС-90А-76. При этом расстояние между соседними двигателями было оставлено без изменений, несмотря на то что диаметр двигателей ПС-90А-76 (Д = 2м) [1] превосходит диаметр двигателей Д-30КП (Д = 1,5 м), а расстояние между двигателями составляет 4 м.

Близость расположения двигателей вносит существенные коррективы в параметры воздушного потока, втекающего на вход двигателей, что сказывается на газодинамической устойчивости работы двигателей на пробеге с применением реверса тяги. На пробеге самолета Ил-76ТД-90 с применением реверса тяги всех 4-х двигателей наблюдается интенсивный заброс реверсивных струй внутренних двигателей (СУ №2 и СУ №3) на вход внешних двигателей (СУ №1 и СУ №4) [2; 4]. Вследствие этого существует ограничение в применении всех четырех реверсивных устройств силовых установок на пробеге.

Параметры воздушного потока на входе в двигатели могут меняться в зависимости от скорости пробега самолета, а также от внешних условий, таких как скорость и направление ветра во время пробега самолета. Целью данной статьи является исследование влияния ветровых условий на параметры воздушного потока, входящего в двигатели СУ №1 и СУ №4.

В качестве исходных данных для исследований были использованы метеоданные (скорость и направление ветра) для аэропорта Шереметьево за октябрь 2013 г. (01.10.2013 г. по 30.10.2013 г. включительно).

Для каждых суток были вычислены такие параметры ветра, как средняя скорость и направление ветра к оси самолета:

$$Wcp = \frac{\sum_{i=1}^{i=48} Wi}{48};$$
  

$$\theta cp = \frac{\sum_{i=4}^{i=48} \theta i*Wi}{\sum_{i=1}^{i=48} \theta i},$$

где i — порядковый номер замера (48 замеров в сутки);  $W_i$  — скорость ветра во время замера, м/с;  $\Theta_i$  — угол вектора скорости ветра к оси самолёта, град.; 48 — количество замеров параметров ветра за сутки.

Параметры ветра (скорость и направление) в течение октября 2013г. представлены на рис. 1 и рис. 2.



Рис. 1. Значение скорости ветра в октябре 2013 г. (аэропорт Шереметьево)



**Рис. 2.** Направление ветра относительно оси самолета за октябрь 2013 г. (аэропорт Шереметьево)

Из рис. 1 и рис. 2 видно, что изменение скорости и направления ветра по дням в течение месяца не подчиняются какому-либо известному статистическому закону в полной мере. Расчеты показывают, что средняя скорость ветра за исследуемый период составляет величину, равную W = 3.5 м/c, а средний угол направления ветра к оси самолёта —  $\theta = 6.3^{\circ}$ . Это обуславливает необходимость исследования влияния параметров ветра на параметры воздушного потока, втекающего в двигатели самолета Ил-76ТД-90, по наибольшим значениям направления и скорости ветра.

Для исследования были выбраны следующие параметры ветра (за 13.10.2013 г.):

- скорость ветра W = 10м/c;
- направление ветра к оси самолёта  $\Theta = 70^{\circ}$ .

Математическая модель внешней аэродинамики реверсивных струй на пробеге самолета Ил-76ТД-90 с применением реверса тяги всех четырех двигателей реализована в многофункциональном программном комплексе ANSYS CFX. Моделирование проводилось для скоростей пробега самолета  $V=180~{\rm km/v}$ ,  $V=160~{\rm km/v}$ ,  $V=140~{\rm km/v}$ ,  $V=120~{\rm km/v}$  при выбранной скорости и направлении ветра к оси самолета.

Параметры математической модели.

Расчетная среда:

- воздух, сжимаемый;
- давление воздуха 1 атм;
- температура воздуха 288°К.

Параметры работы двигателей:

- величина обратной тяги  $R_{\text{обр}} = 3600 \text{ кгс};$
- расход воздуха через вентилятор  $G_{\rm B} = 466 \, {\rm kr/c}$ ;
- расход воздуха через реверсивное устройство (РУ)  $G_{peb} = 351 \text{ кг/c}$ ;
- полная температура реверсивной струи на выходе из  $PY T^* = 332.6$ °K;

78

Размеры расчетной области приведены на рис. 3.

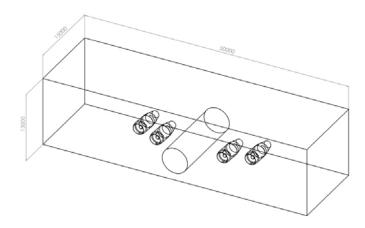
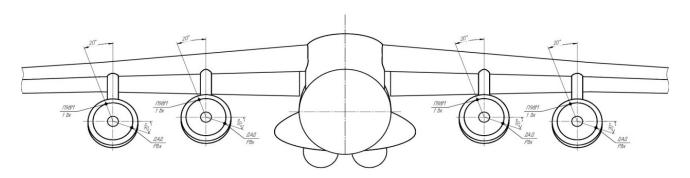




Рис. 3. Расчетная область

В расчетной области создана сетка тетраэдральных конечных элементов объемом 8,5 млн. узлов. Параметры воздушного потока, втекающего в двигатели, определялись в местах расположения датчиков полного давления и температуры на реальных двигателях ПС-90A (рис. 4).



**Рис. 4.** Расположение датчиков на входе в двигатели ПС-90А-76 самолета Ил-76ТД-90. Вид спереди: ДАД – датчики полного давления; П98М – датчики температуры заторможенного потока

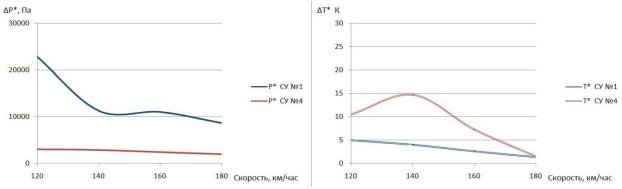
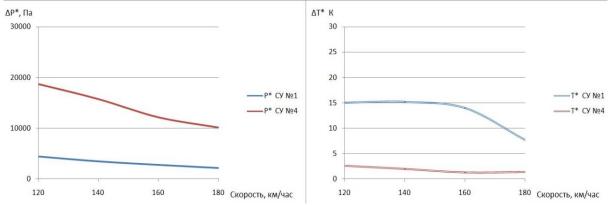

В результате расчетных исследований были получены значения параметров воздушного потока в точках расположения датчиков входящего потока двигателей ПС-90А-76. Влияние бокового ветра видно из сравнения полученных значений параметров воздушного потока с параметрами воздушного потока без учета влияния бокового ветра (табл. 1) [3].

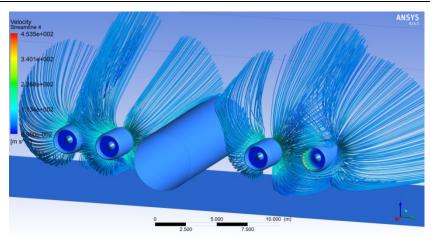
Таблица 1


| Скорость | Без учета ветра       |       |                       |       | С учетом ветра        |       |                        |       |
|----------|-----------------------|-------|-----------------------|-------|-----------------------|-------|------------------------|-------|
| ВС, км/ч | СУ № 1                |       | СУ № 4                |       | СУ № 1                |       | СУ № 4                 |       |
|          | ΔР*, Па               | ΔΤ, Κ | ΔР*, Па               | ΔΤ, Κ | ΔР*, Па               | ΔΤ, Κ | ΔР*, Па                | ΔΤ, Κ |
|          | (кг/см <sup>2</sup> ) |       | (кг/см <sup>2</sup> ) |       | (кг/см <sup>2</sup> ) |       | $(\kappa \Gamma/cm^2)$ |       |
| 180      | -2195                 | 7,7   | -10096                | 1,4   | -8632                 | 1,4   | -1992                  | 1,6   |
|          | (-0.022)              |       | (-0.103)              |       | (-0.088)              |       | (-0.02)                |       |
| 160      | -2821                 | 14    | -12175                | 1,3   | -11068                | 2,6   | -2480                  | 7,3   |
|          | (-0.029)              |       | (-0.124)              |       | (-0.113)              |       | (-0.025)               |       |
| 140      | -3482                 | 15,2  | -15785                | 2     | -11301                | 4     | -2929                  | 14,7  |
|          | (-0.036)              |       | (-0.161)              |       | (-0.115)              |       | (-0.0299)              |       |
| 120      | -4431                 | 15    | -18691                | 2,6   | -22846                | 5     | -3015                  | 10,5  |
|          | (-0.045)              |       | (-0.19)               |       | (-0.233)              |       | (-0.03)                |       |

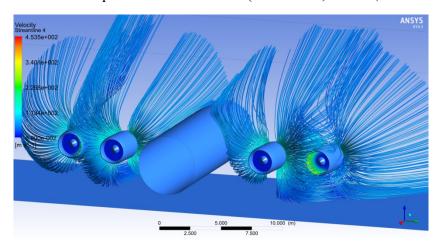
В эксплуатации отмечались случаи помпажа двигателей ПС-90А-76 на пробеге самолета Ил-76ТД-90 при применении реверса тяги на скорости V = 155 км/ч, при этом полное давление воздушного потока на входе в двигатель составляло величину, равную  $P^*_{BX} = 0,771 \text{ кгс/см}^2$  (до включения реверса  $P^*_{BX} = 1,084 \text{ кгс/см}^2$ ). Расчетные исследования показывают (табл. 1), что посадка самолета Ил-76ТД-90 с применением реверса тяги четырех двигателей при боковом ветре (скорость ветра W = 10 м/c, направление ветра к оси самолёта  $\Theta = 70^\circ$ ) может привести к помпажу двигателя СУ №1. Полное давление воздушного потока на входе в двигатель №1 при данных ветровых условиях будет меньше значения ( $P^* = 0,767 \text{ кг/см}^2$ ), при котором был зафиксирован помпаж двигателя в эксплуатации ( $P^* = 0,771 \text{ кг/см}^2$ ).

На рис. 5 показано изменение параметров воздушного потока на входе в двигатель в точках расположения датчиков без учета бокового ветра, а на рис. 6 показано изменение параметров воздушного потока на входе в двигатель в точках расположения датчиков с учетом влияния бокового ветра.

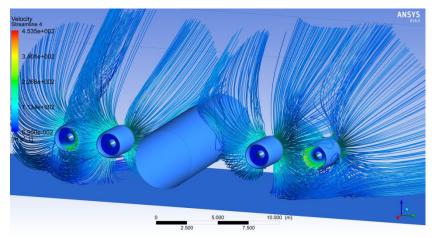



**Рис. 5.** Изменение параметров потока на входе в двигатель в точках расположения датчиков без учета бокового ветра

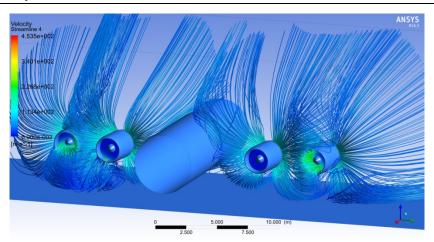



**Рис. 6.** Изменение параметров потока на входе в двигатель в точках расположения датчиков с учётом влияния бокового ветра (W = 10m/c,  $\theta = 70^0$ )

На рис. 7 - 10 представлены результаты расчетных исследований течения реверсивных струй на различных скоростях пробега самолета Ил-76ТД-90 (V = 180 км/ч, V = 160 км/ч, V = 140 км/ч и V = 180 км/ч соответственно).


80 С.С. Фадин, А.А. Комов




**Рис. 7.** Течение реверсивных струй на пробеге самолета Ил-76ТД-90 со скоростью V = 180 км/ч (W = 10 м/c,  $\theta = 70^0$ )



**Рис. 8.** Течение реверсивных струй на пробеге самолета Ил-76ТД-90 со скоростью  $V=160~\text{кm/ч}~(W=10\text{m/c},\,\theta=70^0)$ 



**Рис. 9.** Течение реверсивных струй на пробеге самолета Ил-76ТД-90 со скоростью  $V=140~\text{км/ч}~(W=10\text{м/c},\,\theta=70^0)$ 



**Рис. 10.** Течение реверсивных струй на пробеге самолета Ил-76ТД-90 со скоростью V = 120 км/ч (W = 10м/с,  $\theta = 70^0$ )

Как видно из табл. 1 и рис. 7 - 10, на пробеге самолета с применением реверса тяги всех четырех двигателей боковой ветер вызывает интенсивное падение полного давления на входе в воздухозаборник внешнего двигателя с подветренной стороны. Боковой ветер может увеличивать падение полного давления на 22% по сравнению со случаем посадки в штиль. Также воздействие бокового ветра приводит к более раннему попаданию реверсивных струй в воздухозаборник внешнего двигателя с подветренной стороны. На двигателе СУ № 4 наблюдается интенсивный заброс реверсивных струй из двигателя СУ № 3, которые могут забрасывать посторонние предметы с поверхности аэродрома.

На основании проведенных расчетных исследований можно сделать следующие выводы:

- 1. Боковой ветер значительно влияет на условия работы двигателей ПС-90А-76 в компоновке самолета Ил-76ТД-90 на пробеге с применением реверса тяги всех четырех двигателей, что может повлиять на газодинамическую устойчивость двигателя.
- 2. Посадка самолета Ил-76ТД-90 с применением реверса тяги четырех двигателей при боковом ветре (скорость ветра W = 10 м/с, направление ветра к оси самолёта  $\Theta = 70^{\circ}$ ) может привести к помпажу двигателя СУ № 1.
- 3. Посадка самолета Ил-76ТД-90 с применением реверса тяги четырех двигателей при боковом ветре (скорость ветра W=10 м/с, направление ветра к оси самолёта  $\Theta=70^{\circ}$ ) значительно снижает защищенность двигателя СУ № 4 от заброса посторонних предметов реверсивными струями двигателя СУ № 3.

#### ЛИТЕРАТУРА

- **1. Иноземцев А.А., Коняев Е.А., Медведев В.В., Нерадько А.В., Ряссов А.Е.** Авиационный двигатель ПС-90А. М.: Либра-К, 2007.
- 2. Двигатель ПС-90А-76: расчетная оценка попадания реверсивных струй на вход в двигатель: техническая справка №40981 // ОАО "Авиадвигатель", 2007.
- **3. Комов А.А., Фадин С.С.** Перспективы технического развития парка самолетов Ил-76ТД-90ВД авиакомпании // Известия Самарского научного центра Российской академии наук. Волга-Днепр. 2012. № 4 (2). Т. 14.
- **4. Комов А.А., Фадин С.С.** Внешняя аэродинамика силовой установки на пробеге самолета с применением реверса тяги // Климовские чтения-2013: перспективные направления развития авиадвигателестроения: междунар. науч.-техн. конф. СПб.: Изд-во Политехнического университета, 2013.

82

## INFLUENCE OF WIND ON THE JOB ENGINE PS-90A-76 ON THE MILEAGE OF THE IL-76TD-90 WITH THE USE OF REVERSE THRUST

Fadin S.S., Komov A.A.

This article discusses the results of current research on the impact of wind on the work of the engines PS-90A on the mileage of the IL-76td-90 with the use of reverse thrust.

Keywords: revers, wind, surging, payment research.

### Сведения об авторах

**Фадин Сергей Сергеевич,** 1987 г.р., окончил МГТУ ГА (2013), аспирант МГТУ ГА, автор 6 научных работ, область научных интересов – внешняя аэродинамика силовых установок на пробеге ВС с применением реверса тяги.

**Комов Алексей Алексеевич**, 1950 г.р., окончил МАИ (1976), доктор технических наук, профессор кафедры двигателей летательных аппаратов МГТУ ГА, начальник отдела научных исследований МГТУ ГА, автор более 60 научных работ, область научных интересов – формирование облика летательных аппаратов при обеспечении защиты авиационных двигателей от повреждений посторонними предметами с поверхности аэродрома на режимах руления, взлета и посадки ВС.