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A STOCHASTIC MODEL OF EPIDEMIC

N.I. OVSYANNIKOVA

First let's construct the determined model of the dynamic of uncontrolled epidemiological process. The quotient
describes frequency of meetings of sick people with healthy and probability of infection. It is subject to action of random
factors. Let's enter an item for it which will take into account the influence of a random destabilization. We'll have
stochastic model of epidemic. Comparing the determined and stochastic models, we'll find admissible borders for destabi-
lizing quotient o if the maximum deviation of dynamic variables can not be higher than 5 %.

Key words: The dynamic of epidemic, the determined uncontrolled model of epidemic, stochastic model of epi-
demic, destabilizing quotient, perturbed coefficient.

Determined model, describing uncontrolled process of the spread of epidemic, is described by a
system of differential equations:
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where X(t) _ the rate of change in the number of people exposed to the disease,

Yi(®) _the rate (speed) of change in the number of infected people,

Ax®Y®) _ function characterizing the number of meetings of people exposed to the disease
and infected ones per unit of time,

W(® _ the number of people who regained their health per unit of time without the influence

-1
of external means: quarantine, vaccination and others (7  average time of natural healing),
B _ the growth coefficient, which characterizes the frequency of meetings of healthy people

with infected people (in general case it can be considered as a function ), y(t)))’
H —the coefficient of natural mortality of people,

K _the coefficient of mortality from this infection,

A —average birthrate (reproduction).

The considered mathematical model is determined and allows to calculate in advance the
change of a condition of the studied system, on an interesting time segment by solving the Cauchy
problem (1)—(2). We can assume that the values of some of the coefficients of the system in the mo-

ment L€[0.TT are not uniquely defined, for example, because of their dependence on many unpredict-
able factors, and they can be regarded as random processes, the mathematical expectations of which
are known.

Assume that the coefficient of growth has a random componentﬂ, i.e. it can be
represented as:

pO=m(t) +o-£t,0) @)
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where M(t) _ mathematical expectation of the coefficient /, set it permanent, i.e. m(t) = B = const .
£(to) _ random process; ¢ — constant characterizing the degree of influence of the random perturba-

tion on the value of the coefficient 2 .
In this case, the mathematical model (1)—(2) takes the following form:

%:—ﬂxy—ymz\—axyé(t,w),
Yy 1y o),
dt (4)
X(0, ®) = X, (@), Y(0,®) = Y,(w). (5)

In this case, the state of the system (x(®),y®) is no longer a deterministic vector-function but is

a vector random (stochastic) process (X(t, @), y(t, @) te[0,T]
In general, the system (4)—(5) can be written:

dX(t, w) = A(X,t)dt + B(X,t)df (t, w), (6)

X(0,0) = X,(w), )

. D2 2 . D2 2x1
where A:R*x[0,T] >R : B:R*x[0,T]>R : f(t,®) _ scalar Wiener process;

X(t):(x(t)JeRz A(x,t):( ~ Py A jeRz B(X,t):(_a;‘;(/yJeRz

y(t) By —(u+p+y)y Etow)eR,

The obtained stochastic differential equation will be solved numerically, for this we use a sto-
chastic analogue of Taylor's formula. Apply the unified stochastic Taylor-1to expansion in iterated sto-
chastic integrals and also the approximation of iterated stochastic integrals by means of the polynomial
system of functions [1].

1
Formulate a theorem on Ito process expansion 7(8) = R(X(s),5) , Where R: R x [O1T]—> R in

. o - | (s,
the unified Taylor-Ito series in iterated stochastic integrals '1---'k( ’ )

Theorem 1. Let the process 77(S) = R(X(8),S) pe Ito continuously differentiable r+1 times in

the mean-square sense on [0,T] along trajectories of the equation (6). Then for all s,te [O’T], s>t it
decomposes into a unified Taylor-Ito series of the following type:

78)= 3 (EP (I (s HH® 4 H, 4 (s,
=0 (®)
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(r+1)

2 _ 2
and there exists such a constant Cri <% that \/M{H (8 F<C (s—-1) 2, r=01..
where

def , ~
Hya(s,t) = (Co@)3Y @ (s )V )+ Dy a(s,t) ©)

Dm(S,t)=T(Qp*{n(r)}df®(s@t)“)+}(HA*{n(f)}%df (r)j@(s@t)’*)

t (10)
Q (@)} ={LOC M n(e): (jl.A) e A}
HA (@0} ={ 96, “C 4n(2): (L) e A}
éDq{’?(T)}: {(k)é j|1...|k77(2-) (jly ) e Dq} 1)

WG, .G, L{} if k>0

(k)éjll'-lk{.}{ _ .
Li{} if k=0

o L3 i j>0
L{'}‘{ it j=0
OG {}== ((1)Gp1L{} (1)|_Gpl{}) p=12,..

o'{}

2 j=11,i=1 ! |8X| ,

Goi{.}:ibji(x,t)g{x—}; i=1..,m

i

L{}—a{}+2a(x t)a{}

p=1

k
D, ={(k, j,Il,...,Ik):k+2(j+ZIpJ=q; K, Jo 1, =0,1,..}
k
Uy =2k j b )tk +j+ D0, <
p=1

Aq={(k,J',| Sl k+J+ZI =q; K, j,ly.. Ik=0,1,..}

p=1



110 N.l. Ovsyannikova

equality (8) is just (is fair, is true, takes place, holds) with probability 1, right parts of (8)—(10) exist in
the mean-square sense.

We construct a unified Taylor-Ito expansion for the components of the solution X(®) of the

5
system (4)—(5) for infinitesimal of order of O((s —t)é) , 1.e. we will construct expansion of Ito process
n(t) =X()-

X(8) = X(t) + (s —O)[(=Bxy — px+ A )+ oxy(B(Y = X) + ) 1] (5,1) + Xy (B(2xy = (x - ¥)?)

()(

+u(x=Y)IF (s, 1] + BEXY(Y = X) +2Buxy + 1P X~ ABY = Ap+ (u+ i +7) By

—axyl (s,)+o’xy(y- x)I 0(s,t) + o°xy(2xy — (X — y))Im(st)
IOOOO

+oyY(A=(u+ A+ ) (s,0) + 0 xy Ly (x=y) = (X = YD1 (5,0)
—0"Y (MY =X) =Xy (u+ fi+7)+ ) () + Xy (u+ i+ 7)(y =D+ A1 (s.1) +Hi (.0, (1)

y(s)=y(®) + (s Bxy—(u+i+y)y)+oxy(Bx—y)—(u+ia+y)I(s1)
+o Xy (B(=2xy +(X=Y)*) + (e + @@+ y)(y = x) 17 (s, 1)]

+ 6o t) = (BxY(X=Y) = 2Bxy(u + 1+ ) = Buxy + ABY + (u+ fi+7)*y)

+o-xyl (s,t) + Xy (X = V)12 (s,1) + a°xy(2xy — (X = Y)) I (s, 1) + oy (ux— A) 1] (s,1)

—o'xy (xy (x=y) = (¢ =y ) iy (8,0 + Y (A(Y = X) = xy(u+ @i+ y) + px*) 151 (5, 1)
+a?xy (i (X=y) = A) 13 (s,t) + HY (s, 1), (13)

N
Relations (12)—(13) on a uniform discrete grid {ri}i-o constructed for the segment [O’T],
such that %i = JA, oy =NA=T are selected as a numerical method for modeling the system (6)—(7).
Denote X(F1) =X Y(Z)=Y; and then by putting S=(K+DA t=ka k=0l.. in expansions

0 1
(12)—(13) and using the expansions of the iterated stochastic integrals 78,0, 11(8: 1), in terms of a
polynomial basis, the following expressions for the numerical method are obtained:

X1 = X +A[(=Bxy — px+ A)+oxy(B(Yy —X)+ m) 17 (5,t) + o* Xy (B(2xy — (X - Y)?)

+u(x— Y)Y (s, t)]+—(ﬁ XY(Y = X)+ 28Xy + 11*X = ABY — Ap+(p+ fi+y) Bxy)

000
I

—oxy17 (5,0) + "Xy (y = X)17 (8, 0) + o)y (2xy = (X = Y) )Ty (8, 0) + oY (A = (u + /2
7))L (8,1) + ot xy(AIxy(x = y) = (¢ =y )13 (5.1)
—0"Y(AQY =) = xy(u+ i+ ) + ux*) ) (s, 0) + o*xy((u + i1+ 7)(y =D + A) L (8. 1), (14)
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Yior = Vi HAL(BXY = (e + fi+ 7)Y )+ oxy(B(x—y) = (u+ i+ )1 (s,1)
FOPRY(Bry + (0= Y)Y+ ot )Y - (0] + 5 LBy (x-)

—2Bxy(u+ fi+y) = Buxy + ABY +(u+ ii+y)’ y]+oxyl ] (s,t)
+o7 Xy (X = V)17 (5,8) + Xy (2xy — (X = Y)*) 7 (5,1) + oy (ux = A) 1} (s,1)

0000

—o'xy(LIxy(x—y) — (xX° = y*) 137 (5, 1)

10

0 Y(AQY =X) =Xy (u+ fi+7) + X)L (5,0 + 0 Xy (X = y) = ) (s, 0), (15)
where
|10(Tk+1’7k) = \/Kgél)’

3
A2 1
Ill(Tk+1’Tk) Z_T{G(()l) +ﬁ§1(l)}

A 1 A
) =5 e+ o G -0 | - 3L -2
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m T t)=—
A2 4 2
0000 _ @) @
I (Tk+1’Tk)__24 l:(go ) _6(§o ) +3] (16)

A% 4 1 1
17, ,7.) = =2 ((B)2 42 . 0 W,
1 (T ) ) 3(§o ) 3 So "%1 35 So "5

g 1 1
+ Q.0 -  (/0y2l_9
;{J(zi +1)(2i +5)(2i +3) siei (2i —1)(2i +3) (57
A? 1 A% 2 1
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(1 ;= - . . . .
67 1=0L...0+2 j=1 _, system of independent Gaussian random variables with zero mean
(expectation) and variance of one, which is generated on a step of integration with a number of k and is
independent with the analogous systems of random variables that are generated on all the preceding

steps of integration towards (with respect to) the step of integration with the number of k; A — step of
integration of the numerical method; the number 9 is chosen from the condition ([1], p. 199):

2 2
M {(Illf(fku!fk)_ I(1101)q (Tk+1’z-k)) }: M {(Iloll(TkJrl’Tk)_ I(Olll)q (Tk+l’Tk)) }

4 4
<A_(3(ﬂ__ 1
4

d 1
16116 90 Hi

q
S 4i7 -1

)+(%— )ZJSCAS,

(17)
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where constant C must be given. We choose it for the sake of simplicity to be unity (to be equal to one).
The value of 9 increases with a decrease in the value of the step of integration. Consider the results of
the choice of number 9 with the help of the relation (11). These results are placed in the following table.

A 0,004 0,001 0,0005
Q 1 2 4

l.e., it is enough to let q be equal to 1 that A would be 0,004, then the expansions for I and

I 01
11 take the form:

A2 4 1 1
1 (Tnn ) = 7[ (62 + fgél’ o+ fgél’ o0+ ﬁgf” N (gl(”)z—Z],

A% 2 1 1
137 (T, 7)) = 7[—(&”)2 \/- gDV - 3 J—gél’ o - \/—s“fl) o+ (gll))2+2]

Make the numerical modeling of the solution of the system (6)—(7) by means of relations (14)—(15)
on the time interval T=10 with the step A=0004 \ith the following input (initial) data:
f=210"° p=0003 z=0; A=20; y=1 X,(@)=380000; Y;(®)=2000; 5—=0 Tphe
result of the numerical modeling is presented on fig. 1. Now introduce the stochastic perturbation o >0,
The evolution of processes X(t, @), y(t, o) , Which characterize the process of evolution of epidemic of the
system (6)-(7) for values @ =10":2:107; 5:107; 7-107;10 j5 presented on figs. 2-6, respectively.
The values of the maximal (maximum) trajectories deviations of the perturbed system from the trajectories

of the determined system are listed in table 1, from which direct dependence of maximal (maximum) de-
viations of the solution of a perturbed system on the value of the perturbed parameter o is well seen.
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Fig. 1. Determined model of epidemic, & =0 Fig. 2. Determined

and stochastic models of epidemic, & =10""
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Table 1
Maximum deviation of the trajectories of the perturbed system from the trajectories of
Value of 6 the determined system depending on the value of the parameter ¢
Deviation X, % Deviation Y, %
10~ Practically none 2,5
15-107 Practically none 3,5
2-107 01 4
2,5-10” 0,12 4,5
3.107 0,15 5

For 0 <10 stochastic model is almost equal to the determined one, so it is necessary to take

the determined model for description of the system; for & >3-107 the stochastic model significantly
(by more than 5%) is different from the determined one; therefore the perturbed coefficient needs to be

taken ranging from 10 °t0 3-107"
For different realizations of the system of independent Gaussian values

(1) j= Ci— L o . :

{gij 1=0L..,q+2 _1'2} we obtain different realizations of the solution of the system of stochastic
differential equations (6). These trajectories for small perturbations lie inside of a tube constructed in a
small neighbourhood of the solution of determined system (1). Find mean of the solution of system (6)

in 5. 10 realizations for ©=5-10"" in 5, 10, 15 and 50 realizations for & =10"°,

On figs. 7-12 it is shown a comparison of means with the solution of the determined system of
differential equations (1).



114

N.l. Ovsyannikova

One can conclude that M{X(tiw)}_’ X(t), which is confirmed by numerical experiments,

where X(®) = (x(t). Y(t)) _ solution of determined system (1), (2),

of stochastic system (4), (5).
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of system (6, 7) found in 5 realizations (O = 5-10 )
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of system (6, 7) found in 15 realizations (O = 10_6) of system (6, 7) found in 50 realizations (O = 1076)
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CTOXACTHYECKAA MOJAEJIb IMHAMUKU JIIUIEMUHN

Oscannunkosa H.A.

Ctpountcs OeTepMHUHHUPOBAHHAS MOJENb AWHAMHUKH HEYNPABIIEMOTO SMUAEMHOJIOIMYECKOTO IMpOIecca. 3aTeM,

cuuTas, 4To KodddumeHt B , XapaKTepU3yIOIUI 4aCTOTy BCTPEY U BEPOSTHOCTb 3apa’KeHMs IIPU BCTpede, IMOJABEPKEH
BO3JICHCTBHIO CITydailHbIX (DakTOpPOB, BBEJEM IJIsl HEro cjaraeMoe, YYUTBHIBAIOLIEE BIIMSHHUE CIy4alHOTO BO3MYILEHHSI.
ITomyynM croxacTudeckyro Mojens smuaeMud. CpaBHHMBas JETCPMHHHUPOBAHHYIO M CTOXACTUYECKYIO MOJENH, Haljem

JAOIMYCTUMBIC I'paHULbI JJI1 BO3MYIICHHOT'O KOBq)CI)I/I].[I/IeHTa o npu yCJIOBHH, YTO MAKCHMAJIbHOC OTKJIOHCHUC JTWMHaAMH4C-
CKUX NNEPEMCHHBIX HC NOJIKHO IMPEBBINIATH 5 %.

KaroueBble cioBa: J[MHamMuKa 31MIEMUN, JETEPMHUHUPOBAHHAS HEKOHTPOJIMpYeMask MOJEb 3IHIEMHH, CTOXa-
CTHYECKasi MOJIEIb SIHACMHUH, AECTAOMIM3NPYIOINH (HaKTOp, BO3MYIIECHHBIH KO QHUITHEHT.
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