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THE PROBLEM OF OPTIMAL CONTROL IN THE RUN MODEL

N.I. OVSYANNIKOVA, A.A. POPOVA

The article is devoted to the search of optimal control in a model of a middle-distance running in order to
minimize the time spent. Control is the force exerted by a sportsman per unit mass — or rather, the acceleration. The initial
conditions and constraints on the control are prescribed. In the article optimal control problem is reduced to a fixed-time
one by introducing the coefficient of compression of time, which is the second controlling factor.

Key words: model of competition in running, optimal control in the problem of fast-acting, the coefficient of
compression of time.

1. THEORETICAL ANALYSIS

Running competition is one of the oldest sports, but many records set back in the 90's of the
past century cannot be beaten by athletes so far. So the question arises: is the absolute world record
just the limit of human capabilities or do we need to reconsider the approach to training of athletes?
Let’s consider the running competition as an optimal control problem with a view to minimizing the
time of the race with a set distance.

The mathematical formulation of the problem is as follows:

JW) =T —inf 1)
X'(t) = v(t)
V() =u(t) —r(v) )

ey =2 4 k)
n(v)

0<t<T
0<E(t)<E, 3)
x(0) =0, v(0) = v,, E(0) = E, (4)
x(T) =D ®)
0O<u(t)<U (6)

where t €[0; T] — time, x(t) — coordinate, v(t) — speed (rate), D — a given distance, E(t) — supply of
energy in muscles, u(t)v(t)y*(v) — energy expenditure due to the mechanical work,
n*(v) characterizes the transfer efficiency (efficiency of transition) of the chemical energy into
mechanical one, u(t) — control function (the force developed by the athlete on 1 kg of its weight
(mass), or acceleration), U — maximum value of acceleration, d(E)=y(E, —E) — an increase in
energy due to the removal of lactic acid by blood and transfer it to other muscles, where it is oxidized,
¥y =900c, E, =0,65E,, E, — initial energy, r(v) — resistance to the motion to 1 kg of runner’s weight
(mass), which depends on the speed in a following way [1]:
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0,0037v?, v<6ml/c
r(v) = )
0,6(v—6)+0,0037v,v>6 mu/cC

2. METHOD OF SOLUTION

The speed-in-action problem is formulated as follows: it is needed to find the control vector
u(t), which transforms the system from one given point to another within the shortest time. Reduce the
speed-in-action problem to the problem with fixed time and free right end. Change the independent
variable, putting t=~¢r, dt =&z, where new independent variable 7z varies on a fixed interval

[0, T,]. Here &>0 — scaling number, which can be considered as the control and with the help of
which we will change the interval of integration; T, — selected allowable value of time. Include

constraints (5) and (3) in the functional with the help of penalty terms and move on to the following
problem sequence:

3() = &T, + M, [D = x(€T,)F + N, [ (max(—E(ér), 01)? + (max{ E(ér) ~ E, O] Hr —inf  (8)

X'(z) =&v(t),
Vi(7) =S u(t) —r(v)),
, t)v(t 9
£'(7) = é(d(B) - 2N, ®
n(v)
t(r)=¢
0<£<1,0<u(r)<U (10)
t(0)=0, x(0)=0, v(0)=v,, E()=E, (12)
Divide the segment [0, T] into g equal parts by the points t, = At-i, i= ﬁ and the segment
[0, T,] — by the points 7, =Az-i, izﬁ, where At=¢£-Az, £eR and move on to the discrete
optimal control problem:
g1 _ :
| =&Ty + M (D=Xx")? + N Az & ([max(—E', 0)] + [max(E' — E,, 0)]*) — inf (12)

i=0

X =x"+Ar- &
VT =V H AT EUT (V)

uv

EM=E' +Ar-£(E") -
n(v')

) (13)

t" =t + A7 &
i=0,q-1

0<u'<U, i=0,q-1 (14)
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t°=0, x°=0, v’°=v,, E°=E, (15)

The Lagrange function (Lagrangian) of problem (12)—(15) for A, =1 can be written in the
following form:

A=ET,+M, (D—x%)% + NkAr-gzq:[(max{—E‘, 0h? +(max{E' - E,, 0})°]+

i=0
+Z p|+1(Xi+l _Xi —ATé:Vi)-i-

iy2 i
+Zp,+l Ay Ared i - | 0,0037(v") ,V4S6M./C, N
0,6(v' —6)+0,0037(v")?, v' >6m/c,

+Zp|+l[E|+l EI gAT(}/(E _E! )_TVIJJ Zp|+1(ti+l_ti —AT'é:),

i=0

i=0,q-1

For a locally-optimal process [t, X, E, V, T, £] there exist Lagrange multipliers A, >0 and p‘j :
i=1q, j=1 2 3 4 which are not simultaneously equal to zero and the following conditions are

satisfied:
1) stationary condition with (within) A, =1:

aA

— i+1 — 0
P =p, - P
J i i (16)
oA ol 1, o 0,0074v', ecmu V' <6 m/C e
P AT+ P, — P; 3 GATH i i s EAT =
ov 'S 0,6+0,0074v', ecru V' > 6 mic)

-1 E'<0 (1 E'>E
oA 2Nk§ArH et +{ o= °]+ Pl — pit 4 pitEAT =0

OE' 0,eciu E'>0 0, ecu E' <E,
aA 1
_ = =0
o =p,— P,
i=0,q-1

2) transversality condition for the right end:

oA oA oA oA
ax—q:—ZMk(D—Xq)"'plq:Q ﬁ:p;‘:O, e =P =0 —o=1+pi =0

3) condition of a minimum of Langrangian (Lagrange function) on a control:

u' =arg min {(p'+1 p,;ATA } i=0,q-1,
n

0<u'<U
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E:arg QEQ]{fAT(%Jr Nki{;[(max{—Ei,o})z +(max{|5i -E,, 0})2})_ .

o 17

Slvata (o) {a@) -2, g
i=0 n

We assume all the functions in the statement of the problem are convex in u for all x. From (15)
we get recurrence formulas for the evaluation of conjugate functions:\
pi=p" p'=2M,(D-x%),
i i+ o U
P, =P 1§AT+ P, 1_;' P; 1‘§AT_

_ 0,0074v', ecuv <6 mlc
0,6+0,0074v', ecuv' >6 mlc

py=pyt—ypy AT - (18)

-1 E' 1, E'>E
_ON, A7  ecnu E <O+ ecnu E' > pi =0,
0, ectu E'>0 |0, ecmu E'<E,

]. pi2+l§Az-| pg = 0,

p, =Pt py=-1,
i=9q-10.

3. THE ALGORITHM OF THE METHOD OF PENALTY FUNCTIONS

1) select the initial value of the penalty coefficient My, Nk, k=1,
2) set an initial approximation of controls:

[l =[u*®,..u"], where u'® e[0;U],i=0;q-1 &<[0:1];
3) construct the initial trajectory:
[X]O Z[XO(O),...Xq(O)], [V]O =[VO(O),...Vq(0)], [E]O =[E0(0),...Eq(0)], [t]O :[tO(O),"_tq(O)],

using difference equations (recurrence relations) and initial conditions:

Xi+1(0) — Xi(O) +AT'§Vi(O), X0(0) :O,

i(0) }2 i
v _ i VAT 0@ _ . 0.0037(\/ (0)) , V. (0) 236 M/c, , YR =V,;
0,6(v'® —6)+0.0037(v'® f, v'© > 6 /¢
OO

Ei+l(0) — Ei(O) +AT§(7/E1 _ EI(O))_ ’ EO(O) — EO,

{10 _ 1i(0) +AT-E, 1O =0;

4) calculate initial approximation of the objective function I (0) by the formula (12);
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5) suppose: 1 =19, [x] =X, M =V, [E]* =[E]?, [u]* =[u]?, [£]" =[£]°-
k-th solution of the problem in the method of penalty functions;

6) move on to the next step of the method of penalty functions.

Increase the penalty factors (4 >1, x>1 - constant multipliers):

Mo =tMy, Ny, =AN,, ki=k+1

7) calculate the conjugate functions by formulas (18);
8) calculate the control [u]® =[u°®,..u%*®], &0

ui(1) _ ui(0) _O{%TO) — ui(0) _a(p;+1,(0) %_ pi;l'(O))-Ar‘f,
(0)
£ g0 ﬂ{g_ﬂ =0 e N, 3 fmaxt- ' off + (maxle! €, 0)f |

i=0

) e R A L

and, if u'® <0, then u'® =0, if u'® >U, then u'® =U;
if £(1) <0, then &® =0;if &% >1, then &O =1;
9) evaluate trajectory corresponding to this control

DI =[x°9,.x®], W =[v°®,.v¥®], [E] =[E°®,..E%®], [t] =[t°®,.1%9],

X O _ i@ +AT—§VKD, x°® =0;
iWy¥ i
VO i FAT-E uio | 0.0037(\/ (1)) , V. @ ZSBM/C, RERVCC =V,;
0,6(v'® —6)+0.0037(v'® ', v'@ > 6 m/c
EiHO _ Ei® +AT-§(7E _Ei(l))_M ED _ E -
1 n ' 0’
1O _ i@ +AT-E, t°O — o

10) calculate the next approximation of the objective function I by the formula (12);
11) check the condition of monotonicity: if 1® < 1© | then go to 12), otherwise go to 8) and

_a. 5. B,
a.—z, L %

12) check whether the given accuracy of computing is achieved. If ‘I @ _ (O)‘ < ¢gf,then go to
14), otherwise go to 13);

Bsuppose 19 =10, pJ°=pd®, M7 =M [EI°=[E1", [I°=[]®,
[£1 =[£]®, 9o to 6);

14) suppose 1 =19, " =pd®, I =®, [E]"? =[E]Y, [u]*? =[], [ =[£]° -
(k+1) solution of the problem in the method of penalty functions.
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4. RESULTS

We enter the following initial data: the distance of 1500 m, the energy: 2000 m?/s?;
experimental time of 212 s; initial velocity of the athlete: 3 m/s. The distance is successfully passed by
an athlete within 191,879 s — it is 20 s faster than the experimental time, coefficient of contraction of
time =0,905; the first half of the race the athlete gains speed, then there is an active running, where the
rate is close to the uniform, at the end of the race there is a finishing spurt; control is distributed
similarly: first half of the race it is maximum, then it tends to zero (athlete rests, gaining strength for
the final spurt), then control is maximum again; energy is actively expended in the first half of the
distance, then there is a slight accumulation of it, and then again the expenditure follows. During the
time of passing the distance an athlete spent about 1,100 m?/s? of energy.

x(t).m ‘g) m/s
1500 e — —
1000 — 2 7
0 _,,...--"’/ 5 f/
2
0-—/ L t 0 t
0 b4 ts 128 192 0 64 b 128 192
E(t) m?s? u(t), m/s?
20004 1 X
1500 \\ 32 \ /
1000 e _| D:4 \ /
500 i3 \ /
0 t 0 N/ |
0 64 ts 128 192 0 64 ts 128 192

Fig. 1. Graphs of coordinate x(t), velocity v(t), energy expenditure E(t) and acceleration u(t) of an athlete on a distance
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3AZJAYA OIITUMAJIBHOI'O YIIPABJIEHUA B MOJAEJIA BET'A

OBcsannukoBa H.HU., [TonoBa A.A.

CraTbsl MOCBAIIEHAa NOUCKY ONTUMAJIBHOIO YIPaBJICHWS B MOJENU Oera Ha 3aJaHHYI0 JUCTAHIUIO C LEJBIO
MUHMMU3AIUN BpEMEHU. YTIpaBJICHUEM SIBISETCS CUJa, IPUKIAAbIBaeMas CIOPTCMEHOM (Ha eAMHUIy Macchl). HauanbHble
yCIIOBHS U OTpaHMYEHHUs Ha yIpaBlIeHHE 3aJaHbl. B cTaTbe 3a7aya ONTUMAIBHOTO YNPABICHUS CBOJUTCA K HaXOXKICHUIO
MHHUMAaJBHOTO BpEMEHHM 3abera IyTeM BBeA€HHS KOI(D(HUIMEHTa CXKATUs BPEMEHH, KOTOPBIH SBISETCS BTOPBIM
YIPaBISIIOLIMM (aKTOPOM.

KaroueBble cjoBa: Mojens COpPEeBHOBaHHMs B Oere, ONTHMalbHOE YIpaBICHHWE B 3amade ObICTpoOAeicTBH,
K03 PHUIINECHT CKAaTHs BPEMCHH.
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