УДК 05.07.00

СТАТИСТИЧЕСКИЙ ПОДХОД К ОЦЕНКЕ КОНКУРЕНТОСПОСОБНОСТИ ВЕРТОЛЕТА НА ЭТАПЕ ВНЕШНЕГО ПРОЕКТИРОВАНИЯ И ПРИ ПРИНЯТИИ РЕШЕНИЯ О ПОКУПКЕ ВЕРТОЛЕТА

В.Т. БОБРОННИКОВ, И.Ю. НИКУЛИНА

Разработана методика оценки конкурентоспособности вертолета на основе обработки статистических данных по динамике объема продаж в денежном выражении и характеристик модификаций вертолетов. Введено понятие показателя конкурентоспособности, представляющего собой линейную свертку суммы произведений коэффициентов важности характеристик вертолетов, определяемых на основе выявления корреляционной взаимосвязи между характеристиками и объемами продаж вертолетов в денежном выражении, а также нормированных значений характеристик. Предложены области применения показателя конкурентоспособности: на этапе внешнего проектирования и при принятии решения о покупке вертолета. Приведены результаты численных расчетов для демонстрации применения методики.

Ключевые слова: показатель конкурентоспособности, коэффициент важности, корреляционная взаимосвязь, мировой вертолетный парк, модификации вертолетов, этап внешнего проектирования, покупка вертолета.

ВВЕДЕНИЕ

Для улучшения позиций российской вертолетостроительной отрасли на мировом рынке в ситуации нарастающей конкуренции и ограниченной рыночной емкости российским разработчикам необходимо оценивать рыночную эффективность вертолета до принятия решения о финансировании проекта.

Обзор литературы, посвященной созданию авиационно-космической техники, показывает, что в последние годы при проектировании образцов новой техники все чаще используется понятие конкурентоспособности, обеспечивающее рыночную эффективность разрабатываемого образца [1–2]. Под рыночной эффективностью понимается востребованность на рынке и предпочтительность по сравнению с аналогами создаваемой авиационно-космической техники, выражаемая в объеме продаж.

Целью исследования, результаты которого представлены в статье, является разработка оригинальной методики оценки конкурентоспособности вертолета, основанной на изучении статистической взаимосвязи между характеристиками модификаций вертолетов и их объемами продаж. Методика предназначена для использования при формировании требований к характеристикам вертолета на этапе внешнего проектирования в условиях рынка, а также для поддержки принятия решения о покупке вертолета.

ПОСТАНОВКА ЗАДАЧИ

Мировой вертолетный парк состоит из N моделей вертолетов $M_i, i=\overline{1,S}$, а каждая модель, в свою очередь, состоит из $L_{ik}, k=\overline{1,K_i}$, ее модификаций. Таким образом, всего в вертолетном парке эксплуатируются $K=\sum_{i=1}^s K_i$ различных модификаций вертолетов.

Каждая модификация L вертолета может быть описана набором (вектором) ее характеристик X [3–5], которые могут быть отнесены к одной из следующих групп:

- *нормативные* характеристики $X_{{\scriptscriptstyle норм}}$, которые должны быть обеспечены в соответствии с требованиями нормативно-технологической документации по безопасности полетов, норм ICAO и др.;

- *технические* характеристики $X_{\text{техн}}$, необходимые для выполнения работ и отражающие функциональные возможности вертолета, например, крейсерская скорость, дальность, грузоподъемность и др.;
- эксплуатационные характеристики $X_{_{9\kappa cn}}$, обеспечивающие заданные условия эксплуатации, например, расход топлива, трудоемкость технического обслуживания и ремонта, ресурс и др.;

Таким образом, каждую модификацию вертолета L характеризует вектор его характеристик $X = \begin{bmatrix} X_{nopm}^T & X_{mexh}^T & X_{nexh}^T & X_{nexh}^T \end{bmatrix}^T$ размерности $N = N_{nopm} + N_{mexh} + N_{nexh} + N_{nexh} + N_{nexh}$. Символ T обозначает операцию транспонирования.

В зависимости от характеристик, политико-экономических, рыночных и других факторов каждая модификация L_i имеет годовой объем продаж в денежном выражении Q_i с момента начала серийного производства или начиная за некоторое время до него.

Требуется:

Для достижения указанной цели необходимо решить следующие частные задачи:

- предложить способ учета *статистической взаимосвязи* между характеристиками X_i и объемами продаж вертолетов в денежном выражении Q_i для каждой модификации L_i вертолетов, представленных на рынке, т. е. при $i = \overline{1, N}$;
- собрать и подготовить для анализа статистическую информацию о X_i и Q_i для всех модификаций $L_i, i=\overline{1,N}$;
- рассчитать предложенные статистические характеристики, описывающие указанную взаимосвязь;
 - установить динамику изменения этих взаимосвязей во времени;
 - спрогнозировать тенденции изменения взаимосвязей на заданное число лет вперед;
- *отобрать* характеристики X, обладающие наибольшей взаимосвязью с объемами продаж Q_i по окончании периода прогнозирования;
- используя отобранные характеристики и спрогнозированные взаимосвязи, разработать алгоритм и программу расчета показателя конкурентоспособности анализируемой альтернативы на заданную дату для прогнозирования ее рыночной эффективности.

Конкурентоспособность вертолета

Развивая идеи, предложенные в [6], в данной работе для прогноза конкурентоспособности рассматриваемой альтернативы проектируемого или приобретаемого вертолета, представленной вектором ее характеристик $X=\left|X_i\right|_N$, предлагается рассматривать показатель J(X), который представляет собой линейную свертку произведений коэффициентов важности на нормированные значения x_i , $i=\overline{1,N}$ характеристик X_i модификаций вертолетов вида

$$J(X) = \sum_{i=1}^{R} \alpha_i x_{ii} + \sum_{i=R+1}^{N} \alpha_i x_{3i}, \qquad (1)$$

где

 $x_{ui} = \frac{X_i - X_{i\min}}{X_{i\max} - X_{i\min}}$ — нормированные значения «*целевых*» характеристик модифика-

ций вертолетов X_i , применительно к которым существует *положительная* корреляция между значениями этих характеристик и объемами продаж модификаций вертолетов;

 $x_{3i} = \frac{X_{i \max} - X_{i}}{X_{i \max} - X_{i \min}}$ — нормированные значения затратных характеристик модифика-

ций вертолетов X_i , применительно к которым существует *отрицательная* корреляция между значениями этих характеристик и объемами продаж модификаций вертолетов;

 $X_{i\min}, X_{i\max}$ — минимальное и максимальное значения характеристики X_i среди всех K представленных на рынке модификаций вертолетов;

R — число *целевых* характеристик среди всех рассматриваемых N характеристик, для которых наблюдается их *положительная* корреляция с объемом продаж Q;

N-R — число затратных характеристик среди всех рассматриваемых N характеристик, для которых наблюдается отрицательная корреляция с объемом продаж Q.

В качестве коэффициентов важности α_i нормированных характеристик x_i в работе предлагается рассматривать модули нормированных прогнозных значений коэффициентов корреляции между характеристиками X_i и объемом продаж Q, вычисляемые по формуле

$$\alpha_{i} = \frac{\left| r_{X_{i}Q} \right|}{\sum_{j=1}^{N} \left| r_{X_{j}Q} \right|}, \quad i = \overline{1, N}.$$

$$(2)$$

В этой формуле r_{X_iQ} — оценка коэффициента корреляции между характеристикой X_i и объемом продаж Q, вычисляемая с помощью формулы статистики [7]

$$r_{X_iQ} = \frac{K_{X_iQ}}{\sigma_{X_i} \cdot \sigma_Q},$$

где $K_{\scriptscriptstyle X_i\mathcal{Q}}$ – взаимный корреляционный момент характеристики X_i и объемов продаж \mathcal{Q} :

$$K_{X_{iQ}} = \frac{1}{N-1} \sum_{i=1}^{K} (X_{ij} - m_{X_i}) (Q_j - m_Q);$$

где $\sigma_{X_i} = \sqrt{D_{X_i}}$, $\sigma_{Q} = \sqrt{D_{Q}}$ — оценки с.к.о. характеристик X_i , $i = \overline{1,N}$ и объемов продаж Q; $m_{X_i}, m_{Q}, D_{X_i}, D_{Q}$ — оценки математических ожиданий и дисперсий характеристик X_i и объемов продаж Q:

$$m_{X_i} = \frac{1}{N} \sum_{j=1}^{N} X_{ij}, \ m_Q = \frac{1}{N} \sum_{j=1}^{N} Q_j, \ D_{X_i} = \frac{1}{N-1} \sum_{j=1}^{N} \left(X_{ij} - m_{X_i} \right)^2, \ D_Q = \frac{1}{N-1} \sum_{j=1}^{N} \left(Q_j - m_Q \right)^2.$$

ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

При применении методики значения коэффициентов важности α_i для определения показателя конкурентоспособности J(X) рассматриваемой альтернативы проектируемого вертолета рассчитываются по формуле (1) с использованием прогнозных значений коэффициентов корреляции r_{X_iQ} между характеристиками модификаций вертолетов X_i и объемами продаж Q. Характеристики, модули прогнозных значений коэффициентов корреляции $\left|r_{X_iQ}\right|$, которых по окончании периода прогнозирования меньше заданного, считаются не оказывающими влияния на рыночную эффективность вертолета и в расчете показателя конкурентоспособности J(X) рассматриваемой альтернативы проектируемого или приобретаемого вертолета не участвуют.

Прогноз значений коэффициентов корреляции $r_{X,Q}$ на глубину, необходимую для расчета финансовых показателей проекта с целью принятия решения о его запуске, осуществляется путем экстраполяции значений аппроксимирующей функции. Аппроксимирующая функция может быть найдена с использованием метода наименьших квадратов.

ПРИМЕР ИСПОЛЬЗОВАНИЯ МЕТОДИКИ И ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

В качестве примера использования методики оценки конкурентоспособности вертолета на основе обработки статистических данных была решена задача поддержки принятия решения о покупке медицинского вертолета.

Значения показателя конкурентоспособности J(X) были рассчитаны для 108 модификаций вертолетов, закупленных для эксплуатации в медицинских целях в период с 1968 по 2012 год. При этом учитывались 7 характеристик X_i , значения коэффициентов корреляции r_{X_iQ} которых с объемами продаж рассматриваемых модификаций вертолетов Q в 2012 году превышали по модулю некоторое заданное значение $|r_{X_iQ}| \ge 0,05$ (таблица 1).

Значения коэффициентов корреляции

Таблица 1

№	Характеристика	$r_{X_i \mathcal{Q}}$
1	Динамический потолок	0,08
2	Статический потолок в зоне влияния Земли	0,07
3	Крейсерская скорость	0,25
4	Непревышаемая скорость	0,06
5	Максимальная длина кабины	0,14
6	Максимальная высота кабины	0,11
7	Продолжительность полета	0,07

Значения коэффициентов важности α_i , рассчитанные по формуле (2), представлены в таблице 2.

Таблица 2 Значения коэффициентов важности

№	Характеристика	$lpha_{_{i}}$
1	Динамический потолок	0.11
2	Статический потолок в зоне влияния Земли	0.09
3	Крейсерская скорость	0.32
4	Непревышаемая скорость	0.08
5	Максимальная длина кабины	0.18
6	Максимальная высота кабины	0.14
7	Продолжительность полета	0.08

Наибольшим значением показателя конкурентоспособности $J(X) \ge 0,3$ обладают следующие модификации вертолетов: AS350B-2, A109E, A109K2, A109S, AW109SP, A119, AW119II, AW119Kx, AW139, AW169, EC145C2, EC145T2, S-61N, S-61L, SA330G. В таблице 3 приведены значения показателя конкурентоспособности этих модификаций вертолетов в порядке убывания. Наименьшими значениями показателя конкурентоспособности $J(X) \le 0,15$ обладают такие модификации, как H269, SE313B, SA316A, SA316B, SA319B, SE3160, Bell204B, Bell205A-1, Bo105CB, Bo105CBS, R22.

Значения показателя конкурентоспособности

Таблица 3	,
-----------	---

$N_{\underline{0}}$	Модификация	J(X)
1	AW169	0,71
2	S-61N	0,37
3	S-61L	0,37
4	A119	0,36
5	AW119II	0,36
6	AW119Kx	0,36
7	A109E	0,36
8	A109K2	0,34
9	A109S	0,32
10	AW109SP	0,32
11	SA330G	0,32
12	AS350B-2	0,31
13	AW139	0,30
14	EC145C2	0,30
15	EC145T2	0,30

Таким образом, предлагаемая методика расчета показателя конкурентоспособности обеспечивает поддержку принятия решения о покупке медицинского вертолета из модификаций, когда-либо представленных на рынке, в том числе новых.

Таблица 4

Адекватность предлагаемой математической модели

Проверка адекватности предлагаемой математической модели оценки конкурентоспособности вертолета была выполнена на основе ретроспективной информации. С этой целью выборка объемов продаж модификаций вертолетов, приобретаемых для эксплуатации в медицинских целях, была уменьшена на 5, 10 и 15 лет и проведены расчеты показателей конкурентоспособности по формуле (1) с использованием значений коэффициентов корреляции $r_{X,Q}$, спрогнозированных на соответствующую глубину с применением линейных зависимостей. Результаты проверки адекватности модели приведены в таблице 4. Число модификаций вертолетов с наибольшим значением показателя конкурентоспособности в каждом случае было взято равным 15, как и при расчете за 2012 год (таблица 3).

Результаты проверки адекватности модели

Глубина прогноза	Модификации вертолетов с наибольшим значением показателя конкурентоспособности	Кол-во совпадений с расчетами за 2012 год
5 лет	A109E, A109S, AW109SP, AW139, S-61L, S-61N, BK-117A-1, BK-117A-3, BK-117A-4, EC135P1, EC135P2, EC135P2+, EC135T1, EC135T2, EC135T2+	6
10 лет	A109E, A109S, AW109SP, AW139, S-61L, S-61N, SA330G Puma, AS365N, AS365N1, A109A II, BK-117A-1, BK-117A-3, BK-117A-4, S-76C+, S-76C++	7
15 лет	A109E, A109S, AW109SP, AW139, S-61L, S-61N, SA330G Puma, AW169, MD900, MD902, S-76A++, S-76B, S-76C++, WG-30-100, WG-30-100-60	8

выводы

- 1. В работе предложена методика оценки конкурентоспособности вертолета на основе обработки статистических данных о динамике объема продаж в денежном выражении и характеристик модификаций вертолетов. Методика может быть использована на этапе внешнего проектирования и при поддержке принятия решения о покупке вертолета.
- 2. Введенный показатель конкурентоспособности представляет собой линейную свертку суммы произведений коэффициентов важности характеристик вертолетов, определяемых на основе рассмотрения корреляционной взаимосвязи между характеристиками и объемами продаж модификаций, и нормированных значений характеристик.
- 3. Для демонстрации использования методики приведены результаты расчетов коэффициентов важности характеристик и показателей конкурентоспособности модификаций вертолетов, приобретаемых для эксплуатации в медицинских целях.
- 4. С целью проверки адекватности модели были выполнены расчеты показателей конкурентоспособности с использованием уменьшенной выборки и спрогнозированных на соответствующую глубину значений коэффициентов корреляции.
- 5. Методика и программный комплекс, предназначенные для синтеза системы на этапе внешнего проектирования с применением разработанной методики оценки конкуренто-способности вертолета для решения задач анализа, будут изложены в последующих публикациях авторов.

СПИСОК ЛИТЕРАТУРЫ

- **1. Голубев И.С., Левочкин С.Б.** Содержательная основа проектной конкурентоспособности ЛА // Вестник МАИ. 2010. № 1. С. 88–96.
- **2.** Голубев И.С., Протопопов В.И. Проектная конкурентоспособность авиа- и автотранспортных средств: Основы теории и практические приложения: учебное пособие. М.: МАИ, 2000. 200 с.
- **3. Богданов Ю.С., Михеев Р.А., Скулков Д.Д.** Конструкция вертолетов: учебник для авиационных техникумов. М.: Машиностроение, 1990. 272 с.
- **4. Братухин И.П.** Проектирование и конструкции вертолетов. М.: Государственное издательство оборонной промышленности, 1955. 360 с.
- **5. Тищенко М.Н., Некрасов А.В., Радин А.С.** Вертолеты. Выбор параметров при проектировании. М.: Машиностроение, 1976. 368 с.
- **6. Тищенко М.Н.** Выбор параметров вертолета на начальной стадии проектирования. М.: Издательство МАИ-ПРИНТ, 2011. 124 с.
- **7. Вентцель Е.С.** Теория вероятностей и ее инженерные приложения. М.: КноРус, 2013. 480 с.

STATISTICAL APPROACH TO EVALUATE HELICOPTER COMPETITIVENESS AT THE EXTERNAL DESIGN PHASE AND WHILE MAKING A DECISION TO PURCHASE A HELICOPTER

Bobronnikov V.T., Nikulina I.Yu.

The methodology of helicopter competitiveness evaluation based on statistical data on volume of sales dynamics in money terms and performance of helicopter modifications has been developed. Competitiveness factor calculated as linear convolution of sum of production of helicopter parameters weight numbers determined on the basis of correlation between the helicopter parameters and annual helicopter sales in money terms and its normalized values have been introduced. The methodology can be applied on the helicopter external design phase and while taking a decision about a helicopter purchase. The results of numerical computations are given to demonstrate the methodology.

Key words: competitiveness factor, weight number, correlation, world helicopter fleet, helicopter modification, external design phase, helicopter purchase.

REFERENCES

- **1. Golubev I.S., Levochkin S.B.** Substantive framework of the project competitiveness of the aircraft. MAI Bulletin. 2010. No. 1. P. 88–96. (In Russian)
- **2. Golubev I.S., Protopopov V.I.** Project competitiveness of aircraft and motor vehicles: basic theory and practical application. Training manual. Moscow, MAI, 2000. 200 p. (In Russian)
- **3. Bogdanov Y.S., Mikheev R.A., Skulkov D.D.** Design of helicopters: Textbook for aviation technical schools. M.: Mechanical Engineering, 1990. 272 p. (In Russian)
- **4. Bratukhin I.P.** Design and construction of helicopters. M.: State publishing house of defence industry, 1955. 360 p. (In Russian)
- **5. Tishchenko M.N., Nekrasov A.V., Radin A.S.** Helicopters. The choice of parameters in the design. M.: Mashinostroenie, 1976. 368 p. (In Russian)
- **6. Tishchenko M.N.** The choice of parameters of the helicopter at the initial stage of design. M.: Publishing house MAI-PRINT, 2011. 124 p. (In Russian)
- **7. Ventzel E.S.** Theory of probability and its engineering applications. M.: KnoRus, 2013. 480 p. (In Russian)

nikulina@gmail.com.

СВЕДЕНИЯ ОБ АВТОРАХ

Бобронников Владимир Тимофеевич, доктор технических наук, профессор кафедры № 604 «Системный анализ и управление» МАИ, электронный адрес: vlbobronnikov@yandex.ru. **Никулина Ирина Юрьевна,** аспирантка МАИ, электронный адрес: irina.u.