УДК 531.8

МОЩНОСТЬ СИЛЫ С ПЕРЕМЕННОЙ ТОЧКОЙ ПРИЛОЖЕНИЯ

В.В. ПЕРМЯКОВА

Рассматриваются особенности решения задач в области технической механики, связанные с вычислением работы силы, точка приложения которой изменяет свое положение в твердом теле. Представлено доказательство теоремы с вычислением мощности такой силы. Применение теоремы и вытекающих при этом следствий демонстрируется на конкретных примерах.

Ключевые слова: работа силы, мощность силы, вектор силы, скорость точки приложения, теорема, примеры расчетов.

Как известно, элементарная работа силы определяется скалярным произведением вектора силы на дифференциал радиуса-вектора точки приложения силы

$$dA = \vec{F} \cdot d\vec{r}.\tag{1}$$

Однако данная формула верна лишь для силы, вектор которой закреплен в точке тела. Если же точка приложения вектора силы меняет свое положение на теле, то не все оказывается достаточно определенным.

В дальнейшем целесообразно определять не работу силы, а ее мощность, так как вектор скорости нагляднее и привычнее вектора перемещения.

Для закрепленного вектора силы мощность вычисляется по формуле

$$W = \vec{F} \cdot \vec{v},\tag{2}$$

где \vec{v} - скорость точки тела, к которой приложен вектор силы \vec{F} .

Теорема. Пусть на твердое тело действует несколько закрепленных сил \vec{F}_i , имеющих равнодействующую \vec{F} (рис. 1). Мощность каждой силы

$$W_i = \overrightarrow{F_i} \cdot \overrightarrow{v_i}.$$

Как известно из кинематики твердого тела $\overrightarrow{v_l} = \overrightarrow{v_0} + \overrightarrow{\omega} \times \overrightarrow{\rho_l} \; ,$

$$\overrightarrow{v_i} = \overrightarrow{v_0} + \overrightarrow{\omega} \times \overrightarrow{\rho_i}$$

где $\overrightarrow{v_0}$ – скорость полюса O;

 $\overrightarrow{\rho_i}$ – радиус-вектор, определяющий точку приложения силы на теле.

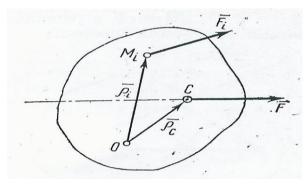


Рис. 1. Пример к определению мощности W

Поэтому

$$W_i = \overrightarrow{F_i} \cdot (\overrightarrow{v_o} + \overrightarrow{\omega} \times \overrightarrow{\rho_i}) = \overrightarrow{F_i} \cdot \overrightarrow{v_o} + \overrightarrow{\omega} (\overrightarrow{\rho_i} \times \overrightarrow{F_i}).$$

128

Мощность всех сил определяется по выражению

$$W = \sum W_i = \overrightarrow{v_0} \cdot \sum \overrightarrow{F_i} + \overrightarrow{\omega} \cdot \sum (\overrightarrow{\rho_i} \times \overrightarrow{F_i}),$$

где $\sum \overrightarrow{F_{l}} = \overrightarrow{F}$ - равнодействующая сил;

 $\sum (\overrightarrow{\rho_l} \times \overrightarrow{F_l}) = \overrightarrow{\rho_C} \times \overrightarrow{F}$ – определяется по теореме Вариньона,

где $\overrightarrow{\rho_C}$ - радиус-вектор определенной точки приложения равнодействующей (точки, принадлежащей телу).

Тогда мощность всех сил, а значит и силы \vec{F}

$$W = \vec{F} \cdot \overrightarrow{v_0} + \vec{\omega} \cdot (\overrightarrow{\rho_C} \times \vec{F}) = \vec{F} \cdot \overrightarrow{v_0} + \vec{F} \cdot (\vec{\omega} \times \overrightarrow{\rho_C}) = \vec{F} \cdot (\overrightarrow{v_0} + \vec{\omega} \times \overrightarrow{\rho_C}) = \vec{F} \cdot \overrightarrow{v_C}. \tag{3}$$

Таким образом, для закрепленной силы \vec{F} мощность равна скалярному произведению силы на скорость той точки тела, к которой приложен вектор силы.

Но, пусть векторы сил, оставаясь закрепленными, непрерывно изменяются и по величине, и по направлению. Тогда точка приложения равнодействующей будет менять свое положение на теле и не обязательно по линии действия, а формула (3) продолжает действовать, так как силы остаются закрепленными.

Следовательно, мощность некоторой силы \vec{F} , точка приложения которой занимает различные положения в теле, есть скалярное произведение вектора этой силы на вектор скорости той точки тела, с которой совпадает в данный момент начало вектора силы.

Удобно ввести понятие скорости, с которой точка приложения силы меняет свое положение в теле — относительную скорость $\overrightarrow{v_r}$ (относительно системы отсчета, скрепленной с телом) и абсолютную скорость \overrightarrow{v} — скорость перемещения точки приложения силы (начала вектора силы) относительно некоторой неподвижной системы отсчета. Переносной скоростью будет тогда скорость точки С тела, с которой точка приложения силы совпадает в данный момент ($\overrightarrow{v_e} = \overrightarrow{v_C}$).

Эти понятия позволяют сформулировать три следствия, вытекающие из теоремы.

1. Так как $\overrightarrow{v_{\mathcal{C}}} = \overrightarrow{v} - \overrightarrow{v_{r}}$, то

$$W = \vec{F} \cdot \vec{v} - \vec{F} \cdot \overrightarrow{v_r} .$$

Следовательно, мощность некоторой силы $\vec{F}c$ переменной точкой приложения равна мощности при абсолютном движении точки приложения вектора силы минус мощность ее при движении относительно тела.

Значение W при закрепленном векторе силы ($\overrightarrow{v_r} = 0$) определяется по формуле

$$W = \vec{F} \cdot \vec{v}. \tag{4}$$

- 2. Если тело движется поступательно (скорости всех точек одинаковы), то любое перемещение точки приложения вектора силы по телу можно не учитывать и предполагать этот вектор закрепленным в произвольно выбранной точке тела.
- 3. Если положение точки приложения вектора силы меняется на теле вдоль линии действия, мощность, а значит и работа, не изменяется, не зависит от такого изменения точки приложения силы.

Действительно, пусть точка приложения силы переместилась по линии действия из M_1 в M_2 (рис. 2), при этом:

- в первом положении ее мощность

$$W_1 = \vec{F} \cdot \overrightarrow{v_1} = \vec{F} \cdot (\overrightarrow{v_0} + \overrightarrow{\omega} \times \overrightarrow{\rho_1}) = \vec{F} \cdot \overrightarrow{v_0} + \overrightarrow{\omega} \cdot (\overrightarrow{\rho_1} \times \overrightarrow{F});$$

- во втором положении

$$W_2 = \vec{F} \cdot \overrightarrow{v_2} = \vec{F} \cdot (\overrightarrow{v_0} + \vec{\omega} \times \overrightarrow{\rho_2}) = \vec{F} \cdot \overrightarrow{v_0} + \vec{\omega} \cdot (\overrightarrow{\rho_2} \times \vec{F}).$$

Но $\overrightarrow{\rho_1} \times \overrightarrow{F}$ и $\overrightarrow{\rho_2} \times \overrightarrow{F}$ – есть моменты силы относительно точки О в первом и втором положениях силы. Моменты эти равны, т.е. $W_1 = W_2$.

Поэтому изменение положения точки приложения силы вдоль линии действия можно не учитывать при вычислении работы и мощности (силу можно переносить по линии действия в произвольную точку тела).

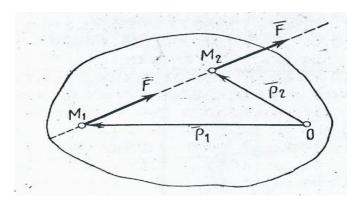


Рис. 2. Пример к определению мощности W_1

Силы, точки приложения которых относительно тела перемещаются, встречаются нередко. Обычно это силы трения, возникающие при скольжении одного тела по поверхности другого; силы тяжести тела переменной массы; натяжение нити, намотанной на тело и др.

<u>Пример</u>. Тело 1 скользит влево по горизонтальной гладкой плоскости. К нему прижимается неподвижное тело 2 (рис. 3). Возникают силы трения скольжения. Одна $\overrightarrow{F_1}$ приложена к телу 1, вторая $\overrightarrow{F_2}$ – к телу 2. Конечно, эти силы по величине равны. Требуется вычислить работу сил трения при перемещении тела 1 на расстояние S.

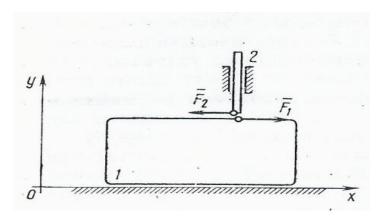


Рис. 3. К определению работы сил трения

Работа силы $\overrightarrow{F_2}$ равна нулю, так как тело 2, к которому она приложена, неподвижно. Работа же силы $\overrightarrow{F_1}$, действующей на движущееся поступательно тело 1, вычисляется с учетом того, что сила $\overrightarrow{F_1}$ прикреплена к телу и движется вместе с ним (следствие 3) и силы трения принимаются постоянными по формуле

$$A=-F_1\cdot S.$$

Если тело 1 имеет форму клина (рис. 4), то результат получается иного содержания.

Сила $\overrightarrow{F_1}$ действует на тело 1 и точка приложения ее перемещается по его поверхности. Само тело движется поступательно со скоростью $\overrightarrow{v_1}$, в связи с чем, учитывая следствие 3, закрепляем силу и определяем ее мощность

$$W_1 = -F_1 \cdot v_1 \cdot \cos \alpha.$$

Сила $\overrightarrow{F_2}$ приложена к телу 2 (является закрепленной силой). Мощность ее определяется по формуле

$$W_2 = -F_2 \cdot v_2 \cdot \sin \alpha = -F_2 \cdot v_1 \cdot \tan \alpha \cdot \sin \alpha.$$

130 В.В. Пермякова

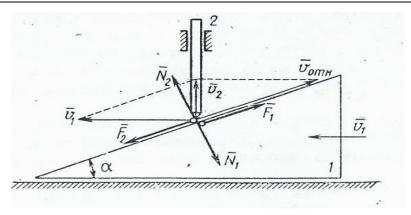


Рис. 4. К определению работы сил трения (тело имеет форму клина)

Суммарная мощность сил трения ($F_1 = F_2 = F$)

$$W = W_1 + W_2 = -F \cdot v_1(\cos \alpha + \tan \alpha \cdot \sin \alpha) = -F \cdot \frac{v_1}{\cos \alpha} = -F \cdot v_{\text{OTH}}.$$

Представляется возможность вычисления мощности нормальных реакций N_1 и N_2 . Точка приложения силы N_1 перемещается по телу 1. Поэтому мощность этой силы вычисляется по выражению

$$W_1 = -N_1 \cdot v_1 \cdot \sin \alpha.$$

Вторая сила N_2 приложена к телу 2. Мощность ее определяется следующим образом $W_2=N_2\cdot v_2\cdot\coslpha=N_2\cdot v_1\cdot anlpha\cdot\coslpha=N_2\cdot v_1\cdot \sinlpha.$ Так как $N_1=N_2$, то суммарная мощность, как и следовало ожидать, равна нулю.

POWER FORCES WITH VARIABLE APPLICATION POINT

Permyakova V.V.

The article shows algorithm of solving problems in calculating work of force applied to the floating point in a solid. A theorem proof is provided calculating power of such a force. The use of the theorem and its consequence is shown on some examples.

Keywords: work of force, power of force, point of force, floating action point of force, forces with floating action point.

Сведения об авторе

Пермякова Вера Владимировна, окончила Норильский индустриальный институт (1979), кандидат технических наук, доцент кафедры технической механики и инженерной графики МГТУ ГА, автор 31 научной работы, область научных интересов – механика, конструирование механического оборудования.