УДК 629.735.017.85

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССОВ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ АВИАЦИОННОЙ ТЕХНИКИ КАК ЗАМКНУТОЙ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

А.Р. АЛЕКСАНЯН, А.А. ИЦКОВИЧ, И.А. ФАЙНБУРГ

Построена математическая модель процессов технической эксплуатации (ПТЭ) авиационной техники (АТ) как замкнутой системы массового обслуживания (СМО), отражающая их вероятностно-статистические характеристики.

Ключевые слова: процессы технической эксплуатации, модель процессов технической эксплуатации, система массового обслуживания.

В рамках решения задачи полного и своевременного удовлетворения потребностей авиационно-транспортной системы в исправных воздушных судах (ВС), обеспечения безопасности и регулярности полетов, интенсивности использования по назначению при минимальных затратах времени, труда и средств на техническое обслуживание и ремонт (ТОиР) АТ выполнено функциональное моделирование Integration Definition For Function Modeling (IDFE0) систем и процессов эксплуатации (СиПЭ) АТ, отражающих их организационно-техническую структуру и качественные характеристики. Это обеспечило структуризацию ПТЭ АТ с учётом их иерархической структуры [1]. На основе результатов этой работы и обобщения опыта эксплуатации ВС были разработаны условные алгоритмы формирования ПТЭ АТ [2]. В развитие этих работ решены задачи формирования ПТЭ АТ с применением имитационного моделирования [3].

В настоящей статье построена математическая модель ПТЭ как СМО, относящаяся к имитационному моделированию.

Процессы эксплуатации включают: процессы летной эксплуатации, процессы коммерческой эксплуатации, ПТЭ АТ, процессы аэродромной эксплуатации и процессы управления воздушным движением. ПТЭ АТ подразделяются на процессы ТОиР, процессы инженерноавиационного обеспечения.

ПТЭ АТ рассматривается как последовательная во времени смена состояний в соответствии с принятой стратегией. К состояниям эксплуатации относятся: использование по назначению, различные виды ТОиР, диагностирование, транспортирование, хранение, ожидание перехода в каждое из этих состояний и др.

Uмитационное моделирование $Cu\Pi \ni AT$ — метод исследования, при котором изучаемые $Cu\Pi \ni AT$ заменяются моделью, с достаточной точностью описывающей реальный процесс, с которой проводятся эксперименты с целью получения количественной оценки вероятностно — статистических характеристик функциональных моделей. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Для построения математической модели ПТЭ используется математический аппарат СМО [4; 5].

В качестве показателей эффективности СМО используются: среднее число заявок, обслуживаемых в единицу времени; среднее число заявок в очереди; среднее время ожидания обслуживания; вероятность отказа в обслуживании без ожидания; вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО, в которых интенсивность потока заявок зависит от состояния СМО, а сами источники заявок являются внутренними элементами СМО, называются замкнутыми.

В результате моделирования определяют такие характеристики СМО, как среднее число заявок в системе, средняя продолжительность пребывания заявок в системе, среднее число заявок в очереди, средняя продолжительность пребывания заявок в очереди, средняя длина очереди и т.д. Такие модели исследуют двумя методами, дающими близкие результаты.

Для стационарного пуассоновского потока могут применяться аналитические методы теории СМО, позволяющие выполнять вероятностные расчёты и вычислять теоретические значения характеристик СМО.

Рассмотрим построение математической модели для ПТЭ ВС «Выполнение регламентных работ в авиакомпании» с применением замкнутой СМО на примере эксплуатации парка самолётов типа A-320 авиакомпании ОАО «Когалымавиа».

Представим, что в авиакомпании имеются: m BC и n мест в ангаре для технического обслуживания (TO) (число каналов для обслуживания). Оборудование ангарных мест допускает «взаимопомощь» только между l группами обслуживания. На каждом BC после установленного налёта (лётные часы) выполняется форма TO, например A-check. BC прибывают для прохождения очередной формы TO в среднем через каждые t сутки. Поток пребывания на TO каждого BC будем считать пуассоновским с плотностью λ . Плотность пуассоновского потока обслуживания каждого канала μ . При этом производительность обслуживания каждого BC равна $l\mu$. Величина l равна максимальному числу каналов, которое может обслуживать одно BC.

Регламентные работы выполняются в среднем в течение T суток. Определим параметры ПТЭ в авиакомпании как замкнутой СМО с параметрами: $n; m; l; h = \left[\frac{n}{l}\right]; \lambda = \frac{1}{t} \frac{1}{cvm\kappa u};$

$$\mu = \frac{1}{\tau} \frac{1}{\text{сумкu}}; \ \chi = \frac{n\mu}{\lambda}; \ \alpha_l = \frac{\lambda}{l\mu}; \ p_{(l)} = \frac{\alpha_l}{1+\alpha_l}; \ q_{(l)} = 1 - p_{(l)}.$$

Пуассоновский поток событий обладает свойствами стационарности, ординарности и отсутствия последействия.

Поток событий является стационарным, если вероятность попадания события на интервал времени зависит только от величины интервала и не зависит от расположения этого интервала на оси времени [4; 5; 6].

Поток событий является ординарным, если вероятность того, что на малый участок Δt , примыкающий к моменту времени t, попадает больше одного события, пренебрежимо мала по сравнению с вероятностью того, что на этот же интервал времени попадает ровно одно событие (поток самолётов, поступающих на регламентные работы).

$$\begin{array}{c|c}
\Delta t \\
\hline
0 & t & t
\end{array}$$

Поток считается потоком без последействия, если для любых двух неперекрывающихся участков τ_1 и τ_2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой.

Если число BC, достигших определённого налёта и прибывших для прохождения TO, лежит в пределах h < j < n, то в обслуживании участвуют все n каналов, распределяясь более или менее равномерно между всеми j прибывшими для прохождения TO BC, при этом каждое BC обслуживается одновременно не более чем l каналами. Если число BC, достигших определённого налёта и прибывших для прохождения TO k лежит в пределах $n \le k \le m$, то ровно n BC обслуживается (каждое BC обслуживается одним каналом) и (k-n) ожидает очереди на обслуживание.

Состояние системы χ_k , k = 0, i, j, n + r будем связывать с числом i BC, достигших определенного числа налёта и прибывших для прохождения TO [6]:

 χ_i — достигло определённого налёта и прибыло на TO ровно BC (i=0,1,...,h) и все они находятся на обслуживании; каждое BC обслуживается одновременно \boldsymbol{l} каналами;

 χ_j — достигло определённого налёта и прибыло на TO ровно j BC (j = h + 1, ..., n - 1) и все они находятся на обслуживании; в обслуживании участвуют одновременно все n каналов, распределяясь произвольно между прибывшими для прохождения TO BC, но так, что все n каналов заняты обслуживанием;

 χ_{n+r} — достигло определённого налёта и прибыло на TO ровно n+r BC (r=0,1...,m-n); из них n обслуживаются (каждое BC одним каналом) и r ожидают в очереди на TO.

Граф состояний системы показан на рис. 1.

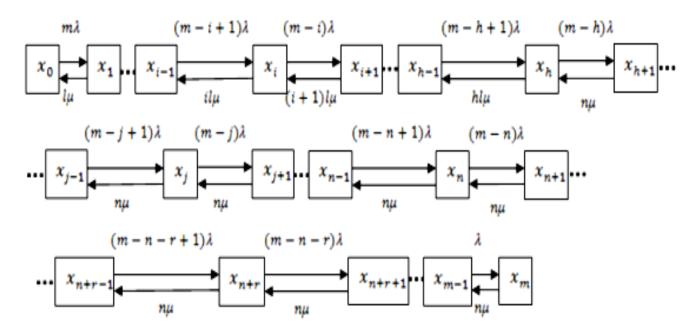


Рис. 1. Граф состояний и переходов системы

Найдём вероятность того, что все BC находятся в эксплуатации (состояние χ_0)

$$p_0 = \frac{1}{\frac{R(m,h,p_l)}{q_{(l)}^m} + \frac{P(h,h)R(m-h-1,\chi)}{P(o,h)P(m,\chi)}} .$$
 (1)

Найдём вероятность того, что ВС достигло установленного налёта часов и прибыло на ТО ровно i ВС (состояние χ_i)

$$P_i = \frac{B(m,i,p_l)}{q_{(l)}^m} p_0 \ . \tag{2}$$

Найдём вероятность того, что BC достигло установленного налёта часов и прибыло на TO ровно j BC (состояние χ_i)

$$P_{j} = \frac{P(h,h)P(m-j,\chi)}{P(0,h)P(m,\chi)} p_{0}.$$
 (3)

Найдём вероятность того, что BC достигло установленного налёта часов и прибыло на TO ровно n+r BC (состояние χ_{n+r})

$$P_{n+r} = \frac{P(h,h)P(m-(n+r),\chi)}{P(0,h)P(m,\chi)}p_0.$$
 (4)

Найдём среднее число обслуживаемых ВС

$$\bar{s} = \frac{p_0}{q^m} \sum_{i=0}^h iB(m, i, p_{(i)}) + \frac{p_0 P(h, h)}{P(0, h) P(m, \chi)} \{ m[R(m - h - 1, \chi) - R(m - n - 1, \chi)] - \chi[R(m - h - 2, \chi) - R(m - n - 2, \chi)] \} + \frac{n p_0 P(h, h)}{P(0, h) P(m, \chi)} R(m - (n + 1), \chi),$$
(5)

где $B(m, i, p_{(l)}) = C_m^i p_{(l)}^i q_{(l)}^{m-i};$

 $R(m, h, p_{(l)}) = \sum_{k=0}^{h} C_m^k p_{(l)}^k q_{(l)}^{m-k}$

Среднее число ВС, ожидающих прохождения регламентных работ, находим из выражения

$$\bar{r} = \frac{p_0 P(h,h)}{P(0,h)P(m,\chi)} \times [(m-n)R(m-n-1,\chi) - \chi R(m-n-2,\chi)].$$
 (6)

Среднее число ВС, ожидающих и проходящих регламентные работы, будет

$$\bar{l} = \bar{s} + \bar{r}. \tag{7}$$

Вероятность того, что отдельно взятый самолёт будет находиться в эксплуатации

$$\xi = 1 - \frac{\bar{l}}{m}.\tag{8}$$

Среднее время простоя ВС будет

$$\overline{t_n} = \overline{t_p} \frac{1-\xi}{\xi}.\tag{9}$$

Среднее время ожидания обслуживания

$$\overline{t_{ou}} = \frac{P(h,h)p_0}{P(0,h)P(m,\chi)} \sum_{r=0}^{m-n-1} P(m-(n+r),\chi) \varphi(n\mu,r), \tag{10}$$

где

$$\sum_{r=0}^{m-n-1} P(m-(n+r),\chi) \varphi(n\mu,r) = \frac{P(0,n)P(m,\chi)}{P(n,n)p_0^*} \left[\frac{1}{\lambda} \frac{1-\xi^*}{\xi^*} - \frac{1}{\mu} \right]. \tag{11}$$

Для нахождения среднего времени обслуживания одного ВС можно воспользоваться равенством

$$\overline{t_{o\delta c}} = \overline{t_n} - \overline{t_{oq}}. (12)$$

Рассмотрим в качестве примера работу аэродрома, к которому приписано 20 ВС. На аэродроме имеются 4 ангара для периодического ТО ВС. Оборудование ангаров допускает «взаимопомощь» при ТО ВС только между двумя бригадами, выполняющими ТО. Каждый самолёт в среднем через 5 суток должен проходить ТО, которое осуществляется в течение одних суток. Определим параметры работы аэродрома с точки зрения ТО ВС:

еделим параметры расоты аэродрома с точки зрения ТО ВС:
$$m{n}=4; \ m{m}=20; \ m{l}=2; \ m{h}=\left[\frac{n}{l}\right]=2; \ m{\lambda}=\frac{1}{5}\frac{1}{cym\kappa u}=0.2\frac{1}{cym\kappa u}; \ m{\mu}=\mathbf{1}\frac{1}{cym\kappa u}; \ m{\chi}=\frac{n\mu}{\lambda}=20; \ m{\alpha}_l=\frac{\lambda}{l\mu}=0.1; \ m{p}_{(l)}=\frac{\alpha_l}{1+\alpha_l}=\frac{0.1}{1+0.1}=0.091; \ m{q}_{(l)}=\mathbf{1}-m{p}_{(l)}=0.909.$$

По формуле (1) найдём вероятность того, что все ВС находятся в эксплуатации.

Предварительно определим значение следующей функции

$$\frac{R(m,h,p_{(l)})}{q_{(l)}^m} = \sum_{k=0}^h C_m^k \alpha_{(l)}^k = C_{20}^0 \alpha_{(l)}^0 + C_{20}^1 \alpha_{(l)}^1 + C_{20}^2 \alpha_{(l)}^2.$$

По таблицам биномиальных коэффициентов находим значение \mathcal{C}_m^k

$$C_{20}^0 = 1$$
; $C_{20}^1 = 20$; $C_{20}^2 = 190$.

Тогда

$$C_{20}^{0} = 1; C_{20}^{1} = 20; C_{20}^{2} = 190.$$

$$\frac{R(m,h,p_{(l)})}{q_{(l)}^{m}} = 1 + (20 \times 0,1) + (190 \times 0,01) = 4,90.$$

Далее по таблицам распределения Пуассона [5] находим:

$$P(h,h) = P(2,2) = \bar{R}(1,2) - \bar{R}(2,2) = 0,594 - 0,323 = 0,271;$$

 $P(0,h) = P(0,2) = 1 - \bar{R}(0,2) = 1 - 0,865 = 0,135;$
 $P(m,\chi) = P(20,20) = \bar{R}(19,20) - \bar{R}(20,20) = 0,529 - 0,441 = 0,0888;$
 $R(m-h-1,\chi) = R(20-2-1,20) = 1 - \bar{R}(17,20) = 1 - 0,703 = 0,297.$

Следовательно

$$p_0 = \frac{1}{4,90 + \frac{0,271 \times 0,297}{0,135 \times 0,0888}} = 0,086.$$

Среднее число ВС, проходящих ТО, найдём по формуле (5), при этом предварительно определим значение следующих функций:

$$\begin{split} \sum_{i=0}^h iB\big(m,i,p_{(l)}\big) &= \sum_{i=0}^2 iB(20,i,0,091) = B(20;1;0,091) + 2B(20;2;0,091); \\ B\big(m,i,p_{(l)}\big) &= C_m^i p_{(l)}^i q_{(l)}^{m-i}; \\ B(20;1;0,091) &= C_{20}^1 0,091^1 0,909^{19} = 20 \times 0,091 \times 0,163 = 0,297; \\ B(20;2;0,091) &= C_{20}^2 0,091^2 0,909^{18} = 190 \times 0,0083 \times 0,179 = 0,282; \\ \sum_{i=0}^h iB\big(m,i,p_{(l)}\big) &= 0,297 + 2 \times 0,282 = 0,861; \\ R(m-n-1,\chi) &= R(20-4-1,20) = 1-\bar{R}(15,20) = 1-0,843 = 0,157; \\ R(m-n-2,\chi) &= R(20-4-2,20) = 1-\bar{R}(14,20) = 1-0,895 = 0,105; \\ R(m-(n+1),\chi) &= R(20-4-1,20) = 1-\bar{R}(15,20) = 0,157; \\ R(m-h-2,\chi) &= R(20-2-2,20) = 1-\bar{R}(16,20) = 1-0,779 = 0,221. \end{split}$$

Тогда среднее число ВС, проходящих ТО, определяем по формуле (5)

$$\bar{s} = \frac{0,086}{0,148} \times 0,861 + \frac{0,086 \times 0,271}{0,135 \times 0,0888} \{20[0,297 - 0,157] - 20[0,221 - 0,105]\} + \frac{4 \times 0,086 \times 0,271}{0,135 \times 0,0888} \times 0,157 = 2,67.$$

Среднее число ВС, ожидающих прохождения ТО, найдём по формуле (6)

$$\bar{r} = \frac{0.086 \times 0.271}{0.135 \times 0.0888} \times [(20 - 4) \times 0.157 - 20 \times 0.105] = 0.80.$$

Среднее число ВС, проходящих и ожидающих прохождение ТО (т.е. ВС, которые не находятся в эксплуатации), находим по формуле (7)

$$\bar{l} = 2,67 + 0,80 = 3,47.$$

Вероятность того, что отдельно взятый самолёт будет находиться в эксплуатации, находим по формуле (8)

$$\xi = 1 - \frac{3,47}{20} = 0,83,$$

т.е. около 83% ВС будут эксплуатироваться, а 17% - ожидать ТО или находиться на ТО.

Среднее время простоя ВС найдём по формуле (9)

$$\overline{t_n} = \overline{t_p} \frac{1-\xi}{\xi} = \frac{1}{\lambda} \times 0.20 = 1 \text{ суток.}$$

Среднее время ожидания обслуживания найдём по формулам (10), (11).

Следует обратить внимание на то, что при вычислении выражения (11) предварительно определяются значения следующих функций: α , p, q, p_0^* , и далее \bar{k} , \bar{r} , \bar{l}^* , ξ^* :

где

$$\frac{R(m,n,p)}{q^m} = 1 + 20 \times 0.2 + 190 \times 0.04 + 1140 \times 0.008 + 4845 \times 0.0016 = 29,47;$$

$$P(0,n) = P(0,4) = 1 - \bar{R}(0,4) = 1 - 0.982 = 0.018;$$

$$P(n,n) = P(4,4) = \bar{R}(3,4) - \bar{R}(4,4) = 0.566 - 0.371 = 0.195;$$

$$R(m-n-1,\chi) = R(20-4-1.20) = 1 - \bar{R}(15,20) = 1 - 0.843 = 0.157;$$

$$P(m,\chi) = P(20,20) = \bar{R}(19,20) - \bar{R}(20,20) = 0.529 - 0.441 = 0.0888.$$

Следовательно,

$$p_0^* = \frac{1}{29,47 + \frac{0,195 \times 0,157}{0,018 \times 0,0888}} = 0,020;$$

$$\bar{k} = \frac{p_0^*}{q^m} \sum_{k=0}^n kB(m,k,p) + \frac{np_0^* P(n,n)}{P(0,n)P(m,\chi)} R(m-n-1,\chi); \qquad (14)$$

$$\sum_{k=0}^n kB(m,k,p) = \sum_{k=0}^4 kB(20;k;0,167) = B(20;1;0,167) + 2B(20;2;0,167) + 4B(20;3;0,167) + 4B(20;2;0,167) = 0,103 + 0,394 + 0,723 + 0,816 = 2,04;$$

$$B(m,i,p_{(l)}) = C_m^i p_{(l)}^i q_{(l)}^{m-i};$$

$$B(20;1;0,167) = C_{20}^1 0,167^1 0,833^{19} = 20 \times 0,167 \times 0,031 = 0,103;$$

$$B(20;2;0,167) = C_{20}^2 0,167^2 0,833^{18} = 190 \times 0,028 \times 0,037 = 0,197;$$

$$B(20;3;0,167) = C_{20}^3 0,167^3 0,833^{17} = 1140 \times 0,0047 \times 0,045 = 0,241;$$

$$B(20;4;0,167) = C_{20}^4 0,167^4 0,833^{16} = 4845 \times 0,00078 \times 0,054 = 0,204.$$

Следовательно,

$$\bar{k} = \frac{0,020}{0,026} \times 2,04 + \frac{4 \times 0,020 \times 0,195}{0,018 \times 0,0888} \times 0,157 = 3,1;$$

$$\bar{r} = \frac{p_0^* P(n,n)}{P(0,n)P(m,\chi)} \times \left[(m-n)R(m-n,\chi) - \chi R(m-n-1,\chi) \right],$$

$$R(m-n,\chi) = R(16,20) = 1 - \bar{R}(16,20) = 1 - 0,779 = 0,221.$$
(15)

Следовательно,

$$\bar{r} = \frac{{}_{0,020 \times 0,195}}{{}_{0,018 \times 0,0888}} \times [(20 - 4) \times 0,221 - 20 \times 0,157] = 0,94;$$

$$\bar{l}^* = \bar{k} + \bar{r} = 3,1 + 0,94 = 4,04;$$

$$\xi^* = 1 - \frac{\bar{l}^*}{m} = 1 - \frac{4,04}{20} = 0,80.$$

Следовательно, по выражению (11)

$$\sum_{r=0}^{m-n-1} P(m-(n+r),\chi)\varphi(n\mu,r) = \frac{0,018 \times 0,0888}{0,195 \times 0,020} \times \left[5 \times \frac{1-0,80}{0,80} - 1\right] = 0,10.$$

Следовательно, среднее время ожидания обслуживания находим согласно формуле (10)

$$\overline{t_{ou}} = \frac{0,271 \times 0,086}{0,135 \times 0,0888} \times 0,10 = 0,19$$
 суток.

Для нахождения среднего времени ТО одного ВС можно воспользоваться равенством (12) $\overline{t_{o6c}} = 1 - 0.19 = 0.81 \ cymo\kappa.$

Таким образом, математическое моделирование ПТЭ позволяет выполнять вероятностные расчёты и определять такие характеристики СМО, как среднее число обслуживаемых заявок, среднее число заявок, ожидающих обслуживание, среднее число заявок, ожидающих и проходящих обслуживание, среднее время простоя, среднее время ожидания обслуживания, среднее время обслуживания одной заявки.

ЛИТЕРАТУРА

- **1. Алексанян А.Р., Ицкович А.А. Файнбург И.А.** Мониторинг процессов поддержания лётной годности воздушных судов на основе применения методов моделирования IDEF0// Научный Вестник МГТУ ГА. 2010. № 162. С. 51 58.
- **2. Алексанян А.Р.** Формирование процедур поддержания лётной годности воздушных судов // Научный Вестник МГТУ ГА. 2011. № 173. С. 52 60.
- **3. Алексанян А.Р., Киселёв Д.Ю., Файнбург И.А.** Формирование процедур выполнения регламентных работ с применением информационных технологий имитационного моделирования // Научный Вестник МГТУ ГА. 2011. № 173. С. 98 108.

- 4. Вентцель Е.С. Исследование операций. М.: Советское радио, 1972. 552 с.
- **5. Вентцель Е.С**. Теория вероятностей и ее технические приложения: учеб. пособие для студентов вузов / М.: Издательский центр «Академия», 2003. 464 с.
 - 6. Овчаров Л.А. Прикладные задачи теории массового обслуживания. М.: Машиностроение, 1969. 324 с.

THE CONSTRUCTION OF MATHEMATICAL MODEL OF PROCESSES OF MAINTENANCE OF AIRCRAFT ENGINEERING AS A CLOSED SERVICE SYSTEM

Aleksanyan A.R., Itskovich A.A., Faynburg I.A.

A mathematical model of the processes of maintenance of aircraft engineering as a closed service system shoving their probability-statistic characteristics is constructed.

Keywords: the processes of maintenance, the model of processes of maintenance, a closed service system.

REFERENCES

- **1.** Aleksanyan A.R., Itskovich A.A. Faynburg I.A. Monitoring protsessov podderzhaniya ljotnoj godnosti vozdushnykh sudov na osnove primeneniya metodov modelirovaniya IDEF0. *Nauchnyy Vestnik MGTU GA*. 2010. № 162. Pp. 51 58. (In Russian).
- **2. Aleksanyan A.R.** Formirovanie protsedur podderzhaniya ljotnoi godnosti vozdushnykh sudov. *Nauchnyy Vestnik MGTU GA*. 2011. № 173. Pp. 52 60. (In Russian).
- **3.** Aleksanyan A.R., Kiseljov D.Ju., Faynburg I.A. Formirovanie protsedur vypolneniya reglamentnykh rabot s primeneniem informacionnykh tekhnologiy imitatsionnogo modelirovaniya. *Nauchnyy Vestnik MGTU GA*. 2011. № 173. Pp. 98 108. (In Russian).
 - 4. Ventcel' E.S. Issledovanie operatsiyy. M.: Sovetskoe radio. 1972. 552 p. (In Russian).
- **5. Ventcel'** E.S. *Teoriya veroyatnostey i ee tekhnicheskie prilozheniya: ucheb. posobie dlya studentov vuzov.* M.: Izdatel'skij tsentr «Akademiya». 2003. 464 p. (In Russian).
- **6. Ovcharov L.A.** *Prikladnye zadachi teorii massovogo obsluzhivaniya*. M.: Mashinostroenie. 1969, 324 p. (In Russian).

Сведения об авторах

Алексанян Армен Размикович, 1976 г.р., окончил МАИ (2007), кандидат технических наук, специалист департамента послепродажного обслуживания гражданской АТ ОАО «Объединённая авиастроительная корпорация (ОАК)», автор 19 научных работ, область научных интересов — поддержание лётной годности воздушных судов.

Ицкович Александр Абрамович, 1934 г.р., окончил УАИ (1957), профессор, доктор технических наук, профессор кафедры технической эксплуатации летательных аппаратов и авиадвигателей МГТУ ГА, автор более 280 научных работ, область научных интересов - эксплуатационная надежность и эффективность эксплуатации авиационной техники, управление процессами поддержания летной годности летательных аппаратов, интегрированная логистическая поддержка.

Файнбург Инна Александровна, окончила МИИВТ (1989), доцент, кандидат технических наук, доцент кафедры технической эксплуатации летательных аппаратов и авиадвигателей МГТУ ГА, автор более 60 научных работ, область научных интересов - управление процессами технической эксплуатации и поддержания летной годности летательных аппаратов, интегрированная логистическая поддержка.