УДК 629.735.015.4

ПРОГНОЗИРОВАНИЕ ВЛИЯНИЯ КОНСТРУКТИВНЫХ ФАКТОРОВ НА СОПРОТИВЛЕНИЕ УСТАЛОСТИ МАТЕРИАЛОВ

С.П. БОРИСОВ

Предложен вариант статистической теории подобия усталостного разрушения В.П. Когаева, позволяющий прогнозировать влияние конструктивных факторов на пределы выносливости деталей по результатам испытаний стандартных образцов при растяжении-сжатии.

Ключевые слова: усталость, подобие усталостного разрушения, конструктивный фактор.

Основными конструктивными факторами, влияющими на сопротивление материалов усталости, являются концентрация напряжений и размеры деталей. Оценку сопротивления усталости с учетом этих факторов чаще всего проводят с помощью коэффициентов, определенных по результатам испытаний. Имеется и ряд методик, позволяющих определять пределы выносливости с учетом влияния конструктивных факторов аналитически. Один из таких подходов разработан В.П. Когаевым на основе статистической теории подобия усталостного разрушения [1]. С использованием этой теории получены зависимости, позволяющие приближенно находить функции распределения пределов выносливости деталей на основе испытаний образцов и моделей, а также прогнозировать влияние концентрации напряжений и размеров деталей для групп сплавов в широком диапазоне градиентов напряжений. Вместе с тем отмечено, что эти зависимости не применимы при равномерном распределении напряжений по сечению и при острых надрезах, т.е. в области достаточно больших значений градиентов напряжений. Подобные ограничения являются следствием особенностей процессов накопления усталостных повреждений, в полной мере не учитываемых статистической теорией усталостного разрушения. Отметим некоторые из них.

Возникновение и развитие трещин в зонах концентрации напряжений обусловлено, применительно к конструктивным параметрам, влиянием целого ряда металлургических и механических факторов: микроструктурой материала, уровнем концентрации напряжений и их градиентом, релаксацией напряжений в зонах микротрещин, циклическим упрочнением, неравномерностью распределения напряжений на микроуровне и т.п. При высоких уровнях концентрации напряжений и высоких градиентах наблюдается явление возникновения «неразвивающихся усталостных трещин» или резкого уменьшения скорости их развития. В этих случаях объем материала в зонах высокой нагруженности относительно мал, что, по-видимому, приводит к уменьшению числа дислокаций и их подвижности в критической зоне и невозможности преодоления барьеров, блокирующих их перемещение. Другим фактором, оказывающим существенное влияние на процессы накопления усталостных повреждений, являются особенности напряженного состояния и микроструктуры поверхностного слоя: даже при однородном напряженном состоянии усталостные трещины, как правило, возникают в поверхностном слое.

Исходя из отмеченных особенностей и с целью расширения возможностей подхода, вытекающего из статической теории усталостного разрушения, введем следующие основные допущения:

1. Усталостные макротрещины возникают в поверхностном слое, размер которого по глубине должен быть не менее Δ , причем Δ является некоторым параметром, зависящим от свойств материала.

2. Усталостные макротрещины возникают лишь при напряжениях, превышающих некоторую величину U.

Остальные допущения те же, что и в [1] при выводе основных расчетных зависимостей.

Применительно к линейному напряженному состоянию основное расчетное соотношение статистической теории усталостного разрушения, вытекающее из статической теории прочности «наиболее слабого звена», имеет вид [1]

$$I = -2,3 \, lg(1-p) = \int_{F_U} \left[\frac{\sigma_{max}(x,y) - U}{\sigma_0} \right]^m \frac{dF}{F_0},\tag{1}$$

где $p = p(\sigma_{max})$ – вероятность разрушения при максимальном напряжении в зоне концентрации; F_U – часть площади поперечного сечения, в которой $\sigma_{max} > U$; U – минимальная граница величины σ_{max} , такая, что при $\sigma_{max} < U$ принимается $P(\sigma_{max}) = 0$; σ_0 и m – параметры распределения Вейбулла; F_0 – единичная площадь может быть принята равной $F_0 = 1 \text{ мм}^2$.

Рис. 1

Рассмотрим распределение напряжений в зоне их концентрации. Будем считать, что распределение напряжений по линии концентратора не изменяется. Реальное распределение заменим линейным распределением с тангенсом угла наклона касательной к эпюре напряжений, равным $tg \alpha = G = \frac{\sigma_{max} - \sigma}{x}$ (рис. 1). Отсюда $\sigma = \sigma_{max} - Gx$.

Предположим, что $\Delta < x_1$, где x_1 – абсцисса точки и $\sigma = U$ – при линейной схематизации эпюры напряжений. Интеграл в равенстве (1) принимает вид

$$I = \int_{L} \int_{0}^{\Delta} \left[\frac{\sigma_{max} - G \cdot x - U}{\sigma_{0}} \right]^{m} \frac{dx \cdot dl}{F_{0}} = -\frac{(\sigma_{max} - G \cdot \Delta - U)^{m+1} \cdot L}{(m+1)G \cdot \sigma_{0}^{m} \cdot F_{0}} + \frac{(\sigma_{max} - U)^{m+1} \cdot L}{(m+1)G \cdot \sigma_{0}^{m} \cdot F_{0}} = \frac{(\sigma_{max} - U)^{m+1} \cdot L}{(m+1)G \cdot \sigma_{0}^{m} \cdot F_{0}} [1 - (1 - \frac{\Delta}{x_{1}})^{m+1}].$$
(2)

В равенстве (2) $x_1 = \frac{\sigma_{max} - U}{G}$.

Если $\Delta = x_1$, то интегрирование по *x* следует вести в пределах от 0 до $\Delta = x_1$. В этом случае выражение (2) принимает вид

$$I = \frac{(\sigma_{max} - U)^{m+1} \cdot L}{(m+1)G \cdot \sigma_0^m \cdot F_0}.$$
(3)

Выражение (3) в точности совпадает с результатом, полученным В.П. Когаевым [1, с. 64, формула (3.30)], и соответствует случаю, когда не накладывается никаких ограничений на напрягаемый объем в зоне концентрации напряжений.

По смыслу введенных допущений формула (2) справедлива в диапазоне изменения градиента напряжений $0 \le G \le G = \frac{\sigma_{max} - U}{\Delta}$, при $G > \frac{\sigma_{max} - U}{\Delta}$ усталостные макротрещины не возникают. При G = 0 выражение (2) представляет неопределенность вида $\frac{0}{0}$. Раскрывая неопределенность, получаем

$$\lim I_{G \to 0} = \frac{(\sigma_{max} - U)^{m+1} \cdot L}{(m+1) \cdot G \cdot \sigma_0^m \cdot F_0} \left[1 - \left(1 - \frac{\Delta}{x_1}\right)^{m+1} \right]_{G \to 0} = \left(\frac{\sigma_{max} - U}{\sigma_0}\right)^m \cdot \frac{L \cdot \Delta}{F_0}.$$
 (4)

В работе [1] зависимость (3) была преобразована с целью оценки характеристик сопротивления материалов усталости с учетом экспериментально установленных закономерностей. Преобразования сводились к следующему. Зависимость (3) была представлена в виде

$$I = -2,3 \ \log(1-P) = \frac{L}{\bar{g}(m+1)F_0} \left(\frac{U}{\sigma_0}\right)^m \frac{(\xi-1)^{m+1}}{\xi},\tag{5}$$

где $\xi = \frac{\sigma_{max}}{U}; \bar{G} = \frac{G}{\sigma_{max}}.$

Если исключить ξ , стоящую в знаменателе, то функции распределения ξ совпали бы с распределением Вейбулла. В этом случае, преобразовывая выражение (5) и принимая $F_0 = 1$, получаем

$$\log I = (m+1)\log(\sigma_{max} - U) + \log\frac{L}{\bar{G}} + \log\frac{1}{(m+1)\sigma_0^m \cdot U}.$$

Откуда

$$\log(\sigma_{max} - U) = \frac{1}{m+1} \log[(m+1)\sigma_0^m \cdot U] - \frac{1}{m+1} \log \frac{L}{\bar{G}} + \frac{1}{m+1} \log I$$

Корректируя последнюю зависимость из условия, что при *P* = 0,5 последнее слагаемое должно быть равно нулю, получаем

$$log(\sigma_{max} - U) = \frac{1}{m+1} \{ log[(m+1) \cdot \sigma_0^m \cdot U] - 0,159 \} - \frac{1}{m+1} log\frac{L}{\bar{G}} + \frac{1}{m+1} \{ log[-2,3 log(1-P)] + 0,159 \} = A'_L - B' log\frac{L}{\bar{G}} + f(P).$$
(6)

В последнем выражении:

$$A'_{L} = \frac{1}{m+1} \{ log[(m+1) \cdot \sigma_{0}^{m} \cdot U] - 0,159 \}; B' = \frac{1}{m+1}; f(P) = \frac{1}{m+1} \{ log[-2,3 log(1-P)] + 0,159 \}.$$

Заменяя распределение Вейбулла (6) нормальным распределением (правомерность этого подтверждается экспериментальными исследованиями [1]), зависимость (6) можно записать в виде

$$log(\sigma_{max} - U) = A_L - B \log \frac{L}{\bar{G}} + U_P \cdot S , \qquad (7)$$

где *A*_L и *B* зависят от параметров распределения.

Выражение (7) определяет семейство функций распределения пределов выносливости деталей с различными значениями критерия подобия $\frac{L}{\bar{G}}$ через нормальное распределение величины $log(\sigma_{max} - U)$ и названо в [1] уравнением подобия усталостного разрушения. Медианные значения $\bar{\sigma}_{max}$ соответствуют среднему значению величины $\bar{x} = log(\sigma_{max} - U)$, получаются при $U_P = 0$ и могут быть определены экспериментально по результатам испытаний на усталость.

В [1] предложена и другая, более удобная для оценки влияния конструктивных факторов на сопротивление материалов усталости, форма уравнения подобия усталостного разрушения

$$\log\left(\frac{\sigma_{\max}}{U}-1\right) = \log\left(\frac{\sigma_{-1\bar{A}}\cdot\alpha_{\sigma}}{\bar{\sigma}_{-1}\cdot\varepsilon_{\infty}}-1\right) = A_L - \log(\bar{\sigma}_{-1}\cdot\varepsilon_{\infty}) - B\log\left(\frac{L}{\bar{G}}\right) + U_P\cdot S,$$
(8)

где $\sigma_{max} = \sigma_{-1d} \cdot \alpha_{\sigma}$, а $U = \bar{\sigma}_{-1} \cdot \varepsilon_{\infty}$. Последнее равенство получено из следующих соображений. Влияние размеров деталей оценивают коэффициентом $\varepsilon_{\sigma} = \frac{\sigma_{-1d}}{\bar{\sigma}_{-1}}$, где $\bar{\sigma}_{-1}$ – среднее значение предела выносливости гладкого лабораторного образца стандартного размера; σ_{-1d} – предел выносливости гладкого образца большего размера. Из (7) при $L \to \infty$ и при $\alpha_{\sigma} = 1$ получаем $\sigma_{max} = \sigma_{-1d} \cdot \alpha_{\sigma} = \sigma_{-1d} \to U$, и коэффициент ε_{σ} будет равен

$$log_{L\to\infty} \varepsilon_{\sigma} = \frac{U}{\overline{\sigma}_{-1}} = \varepsilon_{\infty}$$

Для стандартных лабораторных образцов уравнение (8) при $U_P = 0$ (P = 50%) принимает вид

$$\log\left(\frac{\bar{\sigma}_{-1}}{U}-1\right) = \log\left(\frac{1}{\varepsilon_{\infty}}-1\right) = A_L - \log(\bar{\sigma}_{-1}\cdot\varepsilon_{\infty}) - B\log\left(\frac{L}{\bar{G}}\right)_0.$$
(9)

Вычитая из (8) при $U_P = 0$ зависимость (9), обозначая $B = \gamma_{\sigma}$ и преобразовывая, для оценки совместного влияния концентрации напряжений и размеров получаем

$$\frac{K_{\sigma}}{K_{d\sigma}} = \frac{\overline{\sigma}_{-1}}{\overline{\sigma}_{-1\mathfrak{A}}} = \frac{\alpha_{\sigma}}{\varepsilon_{\infty} + (1 - \varepsilon_{\infty})Q^{-\nu_{\sigma}}},\tag{10}$$

где $Q = \frac{\frac{L}{\overline{G}}}{\left(\frac{L}{\overline{G}}\right)_0}$ – назван В.П. Когаевым относительным критерием подобия.

Выражение (10), полученное на основе зависимости (3), может быть использовано для оценки влияния концентрации напряжений и размеров при G > 0 и при G = 0, т.е. при равномерном распределении напряжений по сечению неприменимо.

Для оценки влияния конструктивных факторов при G = 0 воспользуемся зависимостью (4) и выполним преобразования, аналогичные приведенным выше.

Прологарифмируем выражение (4), принимая $F_0 = 1$:

$$\log I = m \log(\sigma_{max} - U) + \log \frac{\Delta}{\sigma_0^m} + \log L$$

Преобразовывая аналогично предыдущему, получаем

$$log\left(\frac{\sigma_{max}}{U}-1\right) = log\left(\frac{\sigma_{-1,L}\cdot\alpha_{\sigma}}{\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}}-1\right) = \frac{1}{m}log\frac{\sigma_{0}^{m}}{\Delta} + \frac{1}{m}logI - log(\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}) - \frac{1}{m}logL = A_{1} - log(\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}) - B_{1}logL + f(P),$$

где $A_1 = \frac{1}{m} [log \frac{\sigma_0^m}{\Delta} - 0,159]$; $B_1 = \frac{1}{m}$; $f(P) = \frac{1}{m} \{log[-2,3 log(1-P)] + 0,159\}$. Перейдем к нормальному распределению

$$\log\left(\frac{\sigma_{max}}{U} - 1\right) = \log\left(\frac{\sigma_{-1\overline{A}}\cdot\alpha_{\sigma}}{\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}} - 1\right) = A_1 - \log(\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}) - B_1\log L + U_P\cdot S.$$
(11)

Вычтем из (8) при $U_P = 0$ зависимость (11), записанную для стандартных образцов при $\alpha_\sigma = 1$ и $U_P = 0$

$$\log\left(\frac{\overline{\sigma}_{-1\underline{A}}\cdot\alpha_{\sigma}}{\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}}-1\right) = \log\left(\frac{1}{\varepsilon_{\infty}}-1\right) + A_{L} - A_{1} + \frac{1}{m}\log(L)_{0} - \frac{1}{m+1}\log\left(\frac{L}{\overline{G}}\right).$$

Разность $A_L - A_1$ зависит от параметров исходного распределения m, U, σ_0 и от константы Δ . Обозначим $A_L - A_1 = \frac{1}{m} \log C$. Последняя зависимость принимает вид

$$og\left(\frac{\overline{\sigma}_{-1,\overline{L}}\cdot\alpha_{\sigma}}{\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}}-1\right) = log\left(\frac{1}{\varepsilon_{\infty}}-1\right) - log\left(\frac{L}{\overline{c}}\right)^{\frac{1}{m+1}} + log\left(C\cdot L\right)_{0}^{1/m}.$$

Выразим показатели степени для второго и третьего слагаемых правой части через параметр ν_{σ} , введенный В.П. Когаевым и рекомендованный для использования стандартом [2]. Было принято $\nu_{\sigma} = \frac{1}{m+1}$. Отсюда $\frac{1}{m} = \frac{\nu_{\sigma}}{1-\nu_{\sigma}}$.

Получаем

$$\log\left(\frac{\overline{\sigma}_{-1\overline{A}}\cdot\alpha_{\sigma}}{\overline{\sigma}_{-1}\cdot\varepsilon_{\infty}}-1\right) = \log\left(\frac{1}{\varepsilon_{\infty}}-1\right) + \log\frac{(C\cdot L)_{0}^{\frac{1}{1-\nu_{\sigma}}}}{(\frac{L}{\overline{G}})^{\nu_{\sigma}}}$$

Для оценки совместного влияния концентрации напряжений и размеров находим

$$\frac{\kappa_{\sigma}}{\kappa_{d\sigma}} = \frac{\sigma_{-1}}{\overline{\sigma}_{-1\underline{\beta}}} = \frac{\alpha_{\sigma}}{\varepsilon_{\infty} + (1 - \varepsilon_{\infty}) \frac{(C \cdot L)_{1}^{0} - \nu_{\sigma}}{(\frac{L}{\overline{G}})^{\nu_{\sigma}}}} = \frac{\alpha_{\sigma}}{\varepsilon_{\infty} + (1 - \varepsilon_{\infty})Q_{1}^{-\nu_{\sigma}}},$$
(12)

где

$$Q_1 = \frac{\frac{L}{\overline{G}}}{(C \cdot L)_0^{\frac{1}{1 - \nu_\sigma}}}.$$
(13)

Отличие зависимости (12) от (10) заключается в появлении константы *C*, которая может рассматриваться как коэффициент приведения длины, и в другом виде относительного критерия подобия.

Рассмотрим примеры использования зависимости (12).

Пример 1. Пользуясь полученными соотношениями, сопоставим пределы выносливости гладких образцов, испытанных при растяжении-сжатии и изгибе с вращением при симметричном цикле изменения напряжений.

По зависимости (10), принимая $\alpha_{\sigma} = 1$ и $\varepsilon_{\infty} = 0,5$ (по рекомендации [1]), получаем:

$$K_{\sigma} = \frac{\sigma_{-1,H}}{\sigma_{-1,P}} = \frac{2}{(1+Q^{-\nu}\sigma)}; \ Q^{-\nu} = \left[\frac{(\frac{L}{G})_{P}}{(\frac{L}{G})_{H}}\right]^{-\nu}\sigma = \left[\frac{(\frac{L}{G})_{H}}{(\frac{L}{G})_{P}}\right]^{\nu}\sigma$$

При $G \to 0$ (при растяжении-сжатии) получаем $Q^{-\nu} \to 0$ и $K_{\sigma} \to 2$.

Таким образом, при использовании зависимости (10) предел выносливости при изгибе в два раза больше предела выносливости при растяжении-сжатии. Соотношение этих пределов выносливости не зависит от материала и размеров образцов. Этот результат противоречит экспериментальным данным и подтверждает невозможность использования зависимости (10) при G = 0.

Проведем расчеты с использованием зависимости (12) при $\alpha_{\sigma} = 1$, $\varepsilon_{\infty} = 0,5$ и C = 1. Получаем

$$K_{\sigma} = \frac{\overline{\sigma}_{-1,\mathbb{N}}}{\overline{\sigma}_{-1,\mathbb{P}}} = \frac{2}{(1+Q_1^{-\nu_{\sigma}})}; Q_1^{-\nu_{\sigma}} = \frac{L_0^{\frac{\nu_{\sigma}}{1-\nu_{\sigma}}}}{(\frac{L}{\sigma})^{\nu_{\sigma}}}.$$

В табл. 1 приведены результаты вычислений для образцов различных диаметров и для двух значений константы ν_{σ} , примерно соответствующих диапазону изменения этой константы для легких сплавов [1].

Таблица 1

Зависимость отношения предела выносливости при изгибе с вращением к пределу выносливости при растяжении-сжатии

d, мм		7,5 16		40	100	500
$\bar{\sigma}_{-1U}$	$v_{\sigma} = 0,2$	1,05	1,11	1,18	1,24	1,35
$\bar{\sigma}_{-1P}$	$v_{\sigma} = 0.08$	1,04	1,07	1,10	1,14	1,19

При расчете было принято $L_0 = \pi d_i \left(\frac{L}{\bar{G}}\right) = \frac{\pi d^2}{2}$. В [3] приведены результаты испытаний лабораторных образцов круглого поперечного сечения из легких конструктивных сплавов диаметром от 8 мм до 40 мм при изгибе с вращением и при растяжении-сжатии. Отношение предела выносливости при изгибе с вращением к пределу выносливости при растяжении-сжатии в среднем составило 1,1, что близко к результатам расчета по зависимости (12), приведенным в табл. 1. Отметим, что отношение пределов выносливости зависит от материала и диаметра образцов. При $d \to \infty$ это отношение стремится к 2, что было получено по зависимости (10) для образцов любого диаметра.

Пример 2. Определим пределы выносливости образцов различного диаметра гладких и с концентрацией напряжений при изгибе с вращением по результатам испытаний гладких образ-

цов при растяжении-сжатии. Для сопоставления расчетов с экспериментом используем результаты испытаний соответствующих образцов, приведенные в [3].

В табл. 2 приведены исходные данные и результаты расчетов по формуле (12). Пределы выносливости σ_{-1P} при растяжении-сжатии для гладких образцов ввиду отсутствия экспериментальных данных были определены по методике, рассмотренной в примере 1, по результатам испытаний на изгиб с вращением гладких образцов диаметром 8 мм (для ABT) и 12 мм (для MLS и BM 65-1). Расчеты проведены по соотношению

$$K = \left(\frac{K_{\sigma}}{K_{d\sigma}}\right)_{\text{pacy.}} = \frac{\overline{\sigma}_{-1,P}}{\overline{\sigma}_{-1,A}} = \frac{2 \cdot \alpha_{\sigma}}{\left(1 - \frac{V_{\sigma}}{1 - V_{\sigma}}\right)^{\frac{V_{\sigma}}{1 - V_{\sigma}}}}$$

Для гладких образцов принимали $\frac{L}{G} = \frac{\pi d^2}{2}$. С целью оценки влияния величины константы *C*, расчеты проводили при *C* = 1 и при значении этой константы, позволяющей более точно описать экспериментальные данные. На рис 2. представлены результаты расчета и экспериментальные данные. Можно отметить, что при константе *C* = 1 расхождение расчетных и экспериментальных данных в большинстве случаев не превышает 10%, а ошибка идет в запас прочности.

Таблица 2

Исходные данные и результаты расчета пределов выносливости по зависимости (12)

Материал,	Диаметр, α_{σ}		$\bar{\sigma}_{-1 \mathrm{J}}$	Ē	$\bar{\sigma}_{-1P}$	$\overline{\sigma}_{-1P}$ pacy.		$\bar{\sigma}_{-1И_{\pi}}$ расч.,	
механические	MM		МПа	MM^{-1}	$\bar{\sigma}_{-1$ Ид	$\overline{\sigma}_{-1 \text{Ид}}$		МПа	
характеристики			эксп.		эксп.				
ABT	8	1	135	-	0,96	C = 1	$C_{P} = 10$	$C_P = 1$	$C_{P} = 10$
$\sigma_B = 364$ МПа	16	1	130	-	0,99	1,07	1,00	122	129
$v_{\sigma} = 0.08$	40	1	122	-	1,06	1,10	1,07	118	120
$\varepsilon = 0,5$	8	1,45	97	1,362	1,33	1,42	1,27	91	101
$\sigma_{-1P} = 129$ MIIa		1,86	80	2,632	1,62	1,77	1,58	73	82
		2,27	68	4,250	1,98	2,11	1,89	61	68
МП 5	12	1	67	-	0,96	C = 1	$C_{P} = 1,5$	$C_P = 1$	$C_{P} = 1,5$
$\sigma_B = 221$ МПа		1,57	51	0,581	1,27	1,335	1,203	48,4	53,7
$v_{\sigma} = 0.3$		1,87	50	0,872	1,29	1,48	1,328	43,6	48,6
$\varepsilon = 0,5$		2,28	47	1,360	1,37	1,66	1,48	38,9	43,6
$\sigma_{-1P} = 64,6$ MIIa									
BM 65 – 1		1	109	-	0,93	C = 1	$C_P = 7$	$C_P = 1$	$C_P = 7$
$\sigma_B = 267 \ \mathrm{M\Pi a}$	12	1,57	73	0,581	1,40	1,58	1,412	64,5	72,2
$v_{\sigma} = 0,1$		1,87	65	0,872	1,57	1,85	1,64	55,1	62,2
$\varepsilon = 0,5$		2,28	55	1,360	1,85	2,2	1,955	46,4	52,2
$\sigma_{-1P} = 102 \text{ M}\Pi a$,		, í	,

Рис. 2

ЛИТЕРАТУРА

Когаев В.П. Расчеты на прочность при напряжениях, переменных во времени. - М.: Машиностроение, 1977.
 ГОСТ 25.504-82. Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости.
 - М.: Изд-во стандартов, 1984.

3. Степнов М.Н., Гиацинтов Е.В. Усталость легких конструкционных сплавов. - М.: Машиностроение, 1973.

FORECASTING THE INFLUENCE OF STRUCTURAL FACTORS ON RESISTANCE TO MATERIALS FATIGUE

Borisov S.P.

V.P. Cogaev's version of statistical theory of similarity of metal fatigue fracture is dealt with in the article.

Key words: fatigue, similarity of fatigue failure, efficiency factor.

Сведения об авторе

Борисов Станислав Петрович, 1937 г.р., окончил МАИ (1960), профессор, доктор технических наук, профессор кафедры технической механики МГТУ ГА, автор более 80 научных работ, область научных интересов - механика циклического разрушения.