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SAWTOOTH SOLUTIONS TO THE BURGERS EQUATION  

ON AN INTERVAL 
 

A.V. SAMOKHIN, Yu.I. DEMENTYEV 

 

The asymptotic behavior of solutions of the Burgers equation and its generalizations with initial value - boundary 

problem on a finite interval with constant boundary conditions is studied. Since the equation describes the movement in a 

dissipative medium, the initial profile of the solution will evolve to an time-invariant solution with the same boundary val-

ues. However there are three ways of obtaining the same result: the initial profile may regularly decay to the smooth invari-

ant solution; or a Heaviside-type gap develops through a dispersive shock and multi-oscillations; or an asymptotic limit is a 

stationary ’sawtooth’ solution with periodical breaks of derivative.  
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1. Introduction 
 

The Burgers equation  

 2( ) ( ) ( ) ( )t xx xu x t u x t u x t u x t           (1) 

is related to the viscous medium whose oscillations it describes. This viscosity dampens oscillations 

except for stationary solutions which are invariant for some subalgebra of the full symmetry algebra of 

the equation. While studying the equation on the whole line only bounded solutions are usually taken 

into account since only they have a physical meaning. It is not the case for a finite interval as an un-

bounded solution may still remain bounded within an interval. Thus we obtain a wider choices of in-

variant solutions and asymptotics and, consequently, some new effects.  

We consider initial value - boundary problem (IVBP) for the Burgers equation on a finite interval:  

 ( 0) ( ); ( ) ( ); ( ) ( ); [ ]u x f x u a t l t u b t r t x a b          (2) 

The case of constant boundary conditions ( ) ( )u a t A u b t B      and related asymptotics are of a 

special interest here.  

Some of our results are similar to those of Dubrovinet al [1; 2; 3] dealing with a formation of dis-

persive shocks in a class of Hamiltonian dispersive regularizations of the quasi-linear transport equa-

tion. For the Burgers equation the shocks resulting in breaks (and preceded by a multi-oscillation) do 

develops for some IVBPs; some other IVBPs lead to a monotonic convergence to an invariant solu-

tions. One more possibility for the asymptotics is a class of periodic ’saw-tool’ profile solutions. Such 

profiles (though for travelling waves on a line) are known in nonlinear acoustics [4; 5]; they form in 

media where nonlinearity dominates over dispersion, diffraction and absorption. The short history of 

this research is as follows. 

The Burgers equation has been used by many authors (Lighthill - 1956, Soluyan&Khokhlov - 1961, 

Blackstock - 1964) to describe the propagation of one-dimensional acoustic signals of moderate ampli-

tude. Here, -u denotes the velocity or the excess density; if the Lagrangian coordinate Y measures dis-

tance from the driving piston, and, if t denotes time and c0 the linearized sound speed, then x= c0t – Y. 

Thus x/c0  denotes the time elapsed since the passage of a reference wavelet while the constants  and 
2

  quantify the effects of amplitude dispersion and of diffusion respectively, and the subscripts denote 

partial differentiation. 

It is, of course, widely known that the transformation due to Hopf (1940) and Cole (1951) reduc-

es (1) to the heat conduction equation. Using this transformation, Lighthill (1956) illuminates the 
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competition between nonlinearity and diffusion through many examples of shock formation, interac-

tion, spreading and decay. Unfortunately, in nonlinear acoustics the Burgers equation has only limited 

applicability. Geometric spreading and material inhomogeneity both lead to a generalized Burgers 

equation in which 
2

 is replaced by a specified function 
2 ( )Y . Although in some cases of interest 

these effects have been accommodated by the use of perturbation procedures (Crighton&Scott - 1979), 

no linearizing transformation has yet been found. It is therefore useful to obtain exact solutions of (1) 

without recourse to the Hopf-Cole transformation, in the hope that such solutions form the basis of a 

perturbation analysis that can accommodate modulation of 
2

  with Y. 

In many problems of nonlinear acoustics the velocity u is periodic in x, and nonlinear effects are 

dominant near the source. The signal then develops a sawtoothprofile containing regularly spaced 

shocks. These shocks slowly increase in thickness until diffusion becomes important throughout the 

profile at large distances Y. 

This paper is a continuation of [6; 7]. Numeric results are obtained via the Maple PDE tools package. 
 

2. Stable smooth solutions 
 

The Burgers (1) smooth stationary solutions are:  

 ( ) ;u x t c   (3) 

 
2( ) tanh( );u x t x c       (4) 

 
2( ) coth( );u x t x c       (5) 

 ( ) tan( );
x c

u x t


 



    (6) 

 

2

( )u x t
x c

 




  


 (7) 

Burgers equation on the whole line is known to possess travelling waves solutions with the saw-

tool profiles (piecewise-smooth with periodical breaks of derivative). We show this property to have 

an analogue in a form of stationary, t -invariant saw-tool solutions.  

Consider an IVBP for (1) of the form (2): 

 ( 0) ( ); (0 ) ; (1 ) ;u x f x u t A u t B A B R          (8) 

with smooth initial profile ( )f x .  

Taking the dissipation into the account it is naturally to presuppose that at t   we get 

( ) ( )ABu x t y x   where ( )ABy x  is a unique smooth stationary solution corresponding to the ordinary 

differential problem 2 0 (0) (1)y yy y A y B         

Such solutions do exist and the first conjecture was that this limit does not depend on the initial 

profile ( )f x .  

Note that only bounded solutions (they are, incidentally, non-decreasing) are of interest if (1) is 

considered on the whole line x R . But on [ ]x a b   anyone of the above list suits, providing the sin-

gularity is not on the interval.  
 

3. Stability of invariant solutions 
 

A solution of the Burgers equation  

 
t xx xu u u u    (9) 
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with zero boundary conditions 

 
[ ]

( ) ( ) 0; ( 0) ( )
a b

u a t u b t u x f x


       (10) 

monotonically tends to zero as t   in 
2L  norm since  

 2 2 2 ( )
b b b

t xx x
a a a

u dx uu dx u u u u dx
t




   
     (11) 

2 2 22 2 2 2 0
2

b
b b bb

x x x xaa a a
a

udu u uu u dx u dx


        . 

The greater xu , the faster the convergence.  

When the boundary conditions are non-zero but constant  

 
[ ]

( 0) ( ); ( ) ( ) ; ( ) ( )
a b

u x f x u a t f a A u b t f b B


          (12) 

one may expect the solution to converge to the respective smooth stationary invariant solution, i.e. to ( )x :  

 0; ( ) ; ( )xx x a A b B         . (13) 

Such a solution exists and is of one of the above listed forms depending on the combination of 

A and B . In fact, the situation is more complex.  

In the case when dissipative effects are comparatively weak with respect to nonlinearity, other sta-

tionary solutions occur for the same IVBP. Namely these are the saw-tool solutions whose periods are 

( )b a n  , n N . 

Let us see how evolves the difference between u  and the solution of (15). De-

note ( ) ( ) ( )x t u x t x     , i.e. ( ) ( ) ( )u t x x t x     . Substituting the latter into (11) we get  

 ( ( ) ( )) ( )t t t xx xu x t x x t u u u             (14) 

( ( ) ( )) ( ( ) ( ))( ( ) ( ))xx xx t x x t x x t x               

In the case 2   it equals 2 [ 2 ] 2xx x xx x x x{ }           . The expression in square 

brackets equals zero. So  

 2 2( )t xx x x        (15) 

Boundary conditions for  are zero by definition. We evaluate the rate of   by analogy with (13):  

2

2 2
b b

t tL a a
< > dx dx

t
  


   

    

34
2 ( 2 2( ) ) 2 4 ( )

3

b
b b b

xx x x x
a a a

a

dx d d                 

22 2 4 ( ) 4
b bb b

x x xa aa a
dx dx          

 2 2 2 2 22 2 2 2
b b bb

x x x xaa a a
dx dx dx        

 
 

          (16) 

Thus the monotony of 
2L -convergence is not automatically guaranteed; but it surely takes place, 

for instance in the case 0x   (the case of the increasing initial profile, which agrees with the charac-

teristics method). 

It follows that 0x   guarantees decay: if such conditions are satisfied, the deviation   decays to 

zero. When the inequality 2 0t L
< >    fails (e.g., for decreasing initial profile) the difference   

doesn’t necessarily tend to zero. Usually the evolution ends in catastrophe or decay, but it may stabi-

lize half-way. 
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3.1. Decay 

Here is an example of a decay towards a decreasing invariant solution. The initial profile is cho-

sen in a vicinity of this solution and the right-hand side of (16) is negative. Consider the equation 
2 2t xx xu u uu  .  

 
Fig. 1. Initial profile 2 tanh( ) 1 6 sin(2 )x x     ,      Fig. 2.  The graph of the integrand 2 2

x x    

(0 ) 0u t    
2(1 ) tanh(1)u t    . Asymptotic               in (16) for the solution on fig. 1 at 2t   

       limit (dash line) is the invariant solution; n=1 
 

Choose IVBP: 
2 2( 0) tanh( ) 1 6 sin(2 ) (0 ) 0 (1 ) tanh(1)u x x x u t u t               ; 0 05   . 

Here 
2 tanh( )x    is a decreasing invariant solution, 1 6 sin(2 )x     — the perturbation. As-

ymptotics at t   coincides with  , see fig. 1. The dissipation reigns in and no catastrophe devel-

ops. The explanation can be seen in fig. 2 where the typical graph of integrand 2 2

x x    in (16) is 

given at 2t  ; clearly 2 0t L
< >   .  

 

3.2. Catastrophes 

As it is known, for a general quasilinear transport equation ( x R )  

 ( ) 0t xw f w w   (17) 

the moment of gradient catastrophe can be defined as follows. Let ( )w x  be an initial profile. The 

solution of this problem may be given in a parametric form ( ) ( )w x F t        where 

( ( ))F f   . The characteristics of the form ( )x F t    intersect in the case ( ) 0    thus result-

ing in many-valued w  (the tilting of a wave or a gradient catastrophe). If the inequality holds on a fi-

nite interval there exist a minimal value of time, ct , when this problem arises. One may determine ct  

by the formula 1 ( )c ct F     where ( ) max ( )cF F      on the interval [ ]a b . while ( ) 0F   .  

We demonstrate this gradient catastrophe to be inherited by Burgers-like equations for some initial 

profiles, with modest dissipative effects added to a model (17); (cf [3; 2] dealing with a formation of 

dispersive shocks in a different class of extension of (17), namely Hamiltonian dispersive regulariza-

tions of (17) including KdV-likes and Kawahara equations).  

In a complex environment of a finite interval combined with an added dissipation for the Burgers-like 

equation the catastrophe may be delayed or occur earlier, still the main features remain. We begin with the 
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Burgers equation 2 2t xx xu u uu  , with IVBP 2 2 2( 0) ( 1) (0 ) (1) (10 ) (9)sech sech sech{u x x u t u t }          

and 0 02   . The initial peak moves to the right from the far left of the interval, so themoment ct  near-

ly coincides with that for a whole line. The ensuing multi-oscillating process results in a Heaviside-

type break between boundary values at the right end of the interval, fig. 3, 4. Note that constants are 

invariant solutions.  

  

Fig. 3. Start of gradient catastrophe at 0 67
c

t   .  Fig. 4. Multi-oscillations move to a Heaviside 

Dash line is the initial profile 2 ( 1)sech x . n=1    type break 
2 2

tanh (1) tanh (9) at 10x  ; 8t   

 

If we change IVBP of the previous problem for  

2 2 2( 0) ( 9) (0 ) (9) (10 ) (1)sech sech sech{u x x u t u t }         , 

the right end of the interval being nearer, the catastrophe begins earlier, at 0 1t   .  

This is not a behavior specific for the 2sech - type initial data. In yet one more example change 

the IVBP of the previous example for 
2( 0) 0 01 0 9 (0 ) 0 9 (10 ) 0 1u x x u t u t               . The overall 

picture changes only slightly, fig. 7, though the catastrophe starts at 3 9t   , much later than 1.9t   

predicted by the characteristics method.  

 
 

Fig. 5. Initial profile (dots line) 2 4 2tanh( )(2 )x x   ,     Fig. 6. Enlarged part of fig. 5. Piece-

wise- (0 ) 0u t    
2(1 ) tanh( )u t     . Asymptotic limit      (solid) smooth difference ( )x ; 20t   

and the invariant solution (dash) 2 tanh( )x  
 

 



140                                                                                                                                           A.V. Samokhin, Yu.I. Dementyev 

3.3. Developing a stable saw-tool profiles 
 

 

       Fig. 7. The graph of the derivative  , 20t                      Fig. 8. 
2L -estimate of difference 

                                                                                    between invariant 2( ) tanh( )x x    and stabilizing  

multi-oscillating solution of fig. 5 
 

In some cases the evolution of the initial profile results early and clearly not in an invariant solu-

tion from the list (3-7), see fig. 5 with IVBP  
 

2 4 2 2
( 0) tanh( )(2 ) (0 ) 0 (1 ) tanh( ){u x x x u t u t }                  , 0 05 50     . 

 

The stable graph is piecewise smooth. The effect is stable, as the final profile (solid line) here 

seems not to depend on wide variations of initial profile, provided boundary data is the same: identical 

asymptotics are obtained for 
2( 0) tanh( )u x x     or 

2 2tanh( )x     (note that the invariant so-

lution with the same boundary values is 
2

( ) tanh( )x x      ).  

The equation for the derivative v u is 2 2 12 2 ( )tv v v v D v     . The graph of derivative 

( 20)xu x  is presented in fig. 7. Breaks form in a very early stage of evolution in vicinity of 0t  .  

The stabilization may be rather quick. The graph of 
2L -estimate for the difference  , 

2

1
2

0
( ( ) ( ))

L
< > u s t s ds      is presented in fig. 8.  

Calculus of variations suggests to seek such a stationary point as an extremal of the functional (16) 
 

2 2

0

( ) ( ) 0
b

x x
a

h h dx


    


 
 
 




    

   

 

It follows  

 0xx x      (18) 

 

It is hard to compare the numeric extremal presented on fig. 8 to solutions of (18) by numeric 

methods. The obstacle is that the decreasing solutions of the Burgers equation are of the form 

( ) tanh( )x a a x b      and the potential of the linear problem (18), 2( )sech ax b
x

   , is numeri-
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cally finite. As a result some of solutions of (18) are chaotic, at least numerically (e.g., the real part of 

complex solution of (18) may be both discontinuous and multi-oscillating).  

The profile of solution shown in fig. 5 and 6 resemble an intermediate stage in development of a 

saw-tool solution for Burgers equation on the whole line (in the latter case a final stage line segments 

periodically altercate with breaks, as in a real saw, see [4; 5]; under Cole-Hopf transformation it corre-

sponds to the solution of the heat equation which describes the spreading of a periodic array of point 

heat sources). One more specific feature is that the length of the segment [ ]a b is a multiple of the 

saw-teeth period, see fig. 7; on a face of it the period’s length coincides with a spatial step of the nu-

merical mesh, but the mesh points may act as sources of inherent shocks. This hints how to represent 

such solutions analytically. An exact description of such solutions is yet to be described in detail; it 

will be published elsewhere. 
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ПИЛООБРАЗНЫЕ РЕШЕНИЯ УРАВНЕНИЯ БЮРГЕРСА НА ИНТЕРВАЛЕ 
 

Самохин А.В., Дементьев Ю.И. 
 

Изучается асимптотическое поведение решений уравнения Бюргерса на конечном интервале с заданными 

начальными и постоянными граничными условиями. Поскольку уравнение описывает движение в диссипативной 

среде, начальный профиль решения эволюционирует к стационарному (инвариантному по времени) решению с 

теми же граничными условиями. Однако к такому результату ведут три различных пути: начальный профиль мо-

жет регулярно спускаться к гладкому инвариантному решению; или через дисперсионный шок и мульти-

осцилляции развивается разрыв типа Хевисайда; или асимптотическим пределом оказывается пилообразное реше-

ние с периодическими разрывами производной.  
 

Ключевые слова: уравнение Бюргерса, начально-граничная задача, градиентная катастрофа, пилообразные 

решения. 
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