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A CONSTRUCTION OF DIFFEOMORPHISM EXTENSION 

AND ITS APPLICATIONS 
 

A.M. LUKATSKY
1
 

 

Let M be Riemannian manifold with boundary M  and a diffeomorphism f of M . We consider the problem of the 

extension of f  from the boundary M  into the manifold M  to the volume-preserving diffeomorphism f̂ . The design of 

an explicit extension based on the representation theory is offered for the case of the sphere. We also extend the conformal 

and projective groups with the 1n -sphere into the n -ball. As a result, we construct examples of kinematic dynamo in 

the n -ball.  
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Introduction 
 

Let M  be a compact Riemannian manifold with boundary M  and f  be a diffeomorphism of 

M . V.I. Arnold had formulated the following problem ([1], 1988-20): when there is an extension of 

f  from M  into M  such that the extension f̂  is an element of the volume-preserving dif-

feomorphism group SDiff ( )M ? 

Here we consider the case of n -ball (
n

B ) and propose an explicit construction of such an exten-

sion from its boundary, the 1n -sphere ( 1)n
S , into 

n
B . As a consequence we find new examples to 

the problem of kinematic dynamo in 
n

B . These results were reported in the International conference 

"Analysis and singularities (Arnold-75)", [2]. 
 

1.  Construction of the Extension 
 

We consider diffeomorphisms of sphere which are isotopic to the identity. They form the group 
1

0Diff ( ) 2n nS . Then for any diffeomorphism 1

0Diff ( nf S  we have (Thurston, [3])  

1exp( ) exp( )kf v v  

where iv  lies in 1Vect( )n
S , the space of smooth vector fields on the 

1n
S , for 1i k .  

Let v  be a smooth vector field on 
1n

S . We give a construction of its extension to a divergence-

free vector field v in 
n

B . Below we use the representation theory.  

We decompose the space 1Vect( )n
S   into irreducible ( )SO n -modules. It is known (Kirillov, [4]), 

that there are two series of irreducible modules:  

- The series of the divergence-free vector fields with highest weights 0n nM k k  for 4n  

and 0n n n nM k M k k  for 4n :  
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- The series of the gradient vector fields with highest weights 1nk k   
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Here nM  is the highest weight of the adjoint representation of ( ) 4SO n n  ( 4 4M M
 
for (4)SO ); 

n  is the highest weight of the standard representation of ( )SO n  in 
n

R . Thus, we have  

 1

1 2Vect( )n S SS  

We construct the extension for the irreducible modules of these series. In this case it is convenient 

to use the polynomial (in the sense of 
n

R ) notation of vector fields. Note that an irreducible ( )SO n -

module consists of spherical vector fields, in particular polynomial ones.  

1.1. Divergence-free vector field series  

Let us consider the vector field on 
n

S   

 3 2 1( 0 0) 0m

mv x x x m  (1) 

According to [5], mv  has non-null component in the space  

n nM m
 
for 4n ; n n n nM m M m

 
for 4n .  

Obviously, we have 

 1div div 0n nm mv v
S B

. 

It follows that the divergence-free extension of (1) is a vector field itself (i.e. ˆm mvv ). This proper-

ty is invariant with respect to ( )SO n  action on 
1n

S .  

Thus we have  

Proposition 1.1. There exists such a polynomial basis of divergence-free vector fields on 
n

S  that 

its divergence-free extension into 
n

B arethe same vector fields.  

Below we denote div n u
B  

by div u . 

1.2. Gradient series  

In this case it is convenient to use harmonic polynomial form (Vilenkin, [6]). As it is well known 

[4] the homogenous harmonic polynomials of degree k  form an irreducible space of highest weight 

0nk k  in the function space on 
n

R .  

The corresponding space of their gradients on sphere constitutes a ( )SO n -module with highest 

weight nk . One can offer the explicit formulas for these vector fields.  

Consider the ( )SO n -module with highest weight nk . It consists of the gradients of homogene-

ous harmonic polynomials p  of the degree k . Let us take 1grad nu p
S

. Then we have  

 1

1

( ) ( )n

n

p p
u kp x x

x x
. (2) 

Note that  

 div ( ) ( )u p k n k p k n k p  

Proposition 1.2. The divergence-free extension of (2) is given by the formula  
 

 
2 2

1

1

ˆ ( )( 1)( )
2

n

n

n k p p
u u x x

x x
. (3) 

Proof.  

We have 

 
2 2

1

1

ˆdiv ( ) ( 1) ( ) 0
2

n

n i

i i

n k p
u k n k p x x p n k x

x
 

 



132                                                                                                                                                                                          A.M. Lukatsky 

2. Extension of actions of non-compact semi-simple Lie groups on sphere 
In this section we construct volume-preserving extensions from a sphere into its interior ball for 

elements a non-compact simple Lie groupacting on the sphere.  

There are known actions of Lie groups (1 )SO n  (the conformal group of a sphere) and ( )SL n  (the 

projective group of a sphere) on 
1n

S  which do not automatically preserve the volume element of 
1n

S  . 

Now we present the design of their extensions to volume-preserving diffeomorphisms of 
n

B .  

2.1. Consider the action of Lie group (1 )SO n  on 
1n

S . 

Its Lie algebra consists of the vector fields  

 1grad 1 ( )n i{ x i n} so n
S

 

For 3n , we choose 

 2

2

1 1 1 2 1 3grad (1 )v x x x x x x
S

 

Using (3) we obtain that its divergence-free extension has the form  

 2 2 2

1 2 3 1 2 1 3
ˆ ( 2 2 1 )v x x x x x x x  (4) 

Note that the vector field v  does not have a singular point inside the ball 
3

B . The vector field v̂  

singular points form the circle  

2 2

1 2 3

1
0;

2
x x x  

For the vector field (4) it is immediately verified that  

3 2
ˆrot 5(0 )v x x  

Thus we have 
ˆ ˆ[ rot ] 0v v  

Hence, the divergence-free extension of vector field 2 1grad x
S

is a vector field which commutes 

with its curl.  

Take 

2

2

2 1 2 2 2 3grad ( 1 )w x x x x x x
S

 

Its divergence-free extension has the form  

 2 2 2

1 2 1 2 3 2 3
ˆ ( 2 2 1 )w x x x x x x x  (5) 

Consider 2 1( 0)h x x as the vector field of the Lie algebra ( )so n . Note that ĥ h .  

It is immediately verified that  

 [ ]w h v w h  

It follows 

 (exp( )) ( ) ( ) :k kv w h e w h  

this is a property of the Lie group (1 )SO n .  

Now we take  
ˆexp( )F v  

Note that F  is an element of the volume-preserving diffeomorphism group SDiff ( )n
B .  

Thus, on the boundary of 
n

B  (i.e. on 
1n

S ) we obtain  

ˆ ˆ( ) ( )k kF w h e w h  

For any integer k .  

2.2. Consider the action of Lie groups ( )SL n on 
1n

S  

Its Lie algebra consists of the vector fields from ( )so n  and 1 1

2 2grad grad ( )n ni j i jx x x x
S S

 

1i j n i j . 
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For 3n  we take 2

2 2

1 2 gradg x x u g
S

. Note that  

1 2 1 2 3( 2 2 0) 2 ( )u x x g x x x  

Its divergence-free extension has the form  

 2 2 2

1 2 3 1 2 1 2 3
ˆ (5( ) 3) ( 0) 2 ( )u x x x x x g x x x  (6) 

Note that the vector field u  has the set of singular points inside 
3

B . This set coincides with the in-

terval 1 2 30 1 1x x x . The singular points of the vector field û  inside 
3

B include this interval 

and also the two intersecting circles  

2 2 2

1 2 1 2 3

3
;

5
x x x x x  

Note that these extensions of the elements of conformal and projective group actions on the 
1n

S  

generate infinite subgroups of the group SDiff ( )n
B .  

 

3. Extension of actions of non-commutative solvable Lie groups on sphere 
 

Here we construct volume-preserving extensions for the non-commutative solvable Lie group ac-

tions on sphere into its interior ball. 

Let us consider 2 1 2n nS . We take 

2 1 4 3 2 2 1 1 2 4 3 2 2 1( ); ( ) (0 0 )n n n nh x x x x x x v p x x x x x x  

where p  is a homogeneous harmonic polynomial of the degree k .  

The vector fields h v  generate a finite-dimensional non-commutative solvable Lie algebra. Their 

divergence-free extensions from
1n

S  into 
n

B are the same vector fields. 

Example 3.1. Consider 
3

S .  

Let us take  
2 2

2 1 3 4 1 2 4 3 1 2 4 3( ); (0 0 ); ( ) (0 0 )h x x x x v x x x x w x x x x  

We have 

[ ] ; [ ] 4 ; [ ] 0h v w h w v v w  

Thus, we obtain the 3-dimensional non-commutative solvable Lie algebra of divergence-free vec-

tor fields on 
3

S . Theirs divergence-free extensions on 
4

B are the same vector fields. 

Note that these extensions of the elements of non-commutative solvable group actions on the 
2 1n

S  

generate a finite Lie group as subgroups of 2SDiff ( )n
B . 

 

4. Application to the problem of kinematic dynamo 
 

Let us consider the vector field û  (6). Note that û  has a singular point at the origin. Linearized 

vector field û
x

 at the origin has the form  

3 0 0

0 3 0

0 0 0

 

and its eigenvalues are 3 3 0{ } .  

According to Arnold-Khes in theorem [7, p. 275-276], û is an example of nondissipative kinemat-

ic dynamo of the rate 1L т  for any 0т . Direction for implementing dynamo effect at the origin is giv-

en by the eigenvector (1, 0, 0).  
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Divergence-free vector field with the focus at the origin may be obtained using an extension of the 

conformal group. Here again, we take the vector field v̂ , (4). Note that ˆ(0) ( 1 0 0)v . Consequently, 

the vector field v̂  can be considered as the effect of the magnetic field in the kinematic dynamo.  
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КОНСТРУКЦИЯ ПРОДОЛЖЕНИЯ ДИФФЕОМОРФИЗМА И ЕГО ПРИЛОЖЕНИЯ 
 

Лукацкий А.М. 

 

Пусть M есть риманово многообразие с границей M , а f есть диффеоморфизм M . Рассмотрим задачу 

продолжения f  
с границы M внутрь многообразия M до сохраняющего объём диффеоморфизма f̂ .

 
В статье 

для случая сферы предложена явная конструкция такого продолжения, основывающаяся на теории представлений. 

Мы также рассматриваем продолжения действия конформной и проективной групп с 1n -сферы на n -мерный 

шар. В результате получены примеры кинематического динамов n -мерный шаре. 

 

Ключевые слова: проблема Арнольда, риманово многообразие, граница, продолжение диффеоморфизма, 

диффеоморфизм сохраняющий объём, кинематическое динамо.  
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