УДК 514.7

РЕШЕНИЯ УРАВНЕНИЯ БЮРГЕРСА С ПЕРИОДИЧЕСКИМ ВОЗМУЩЕНИЕМ НА ГРАНИЦЕ

А.В. САМОХИН

Изучена асимптотика решений уравнения Бюргерса с начальными/граничными данными на конечном интервале с периодическим возмущением на границе. Уравнение описывает вязкую среду и первоначальный постоянный профиль переходит в бегущую волну с убывающей амплитудой. При малых значениях вязкости асимптотический профиль имеет пилообразный профиль с периодическими разрывами производной, похожий на известное решение Фэя на полупрямой.

Ключевые слова: уравнение Бюргерса, начально-граничная задача на отрезке, пилообразные решения.

1. ВВЕДЕНИЕ

Уравнение Бюргерса

$$u_t(x,t) = \varepsilon^2 u_{xx}(x,t) - 2 \cdot u(x,t) u_x(x,t). \tag{1}$$

описывает колебания вязкой среды. Вязкость гасит колебания (за исключением инвариантных относительно какой-либо подалгебры симметрий).

Начально-граничные данные на конечном интервале для уравнения Бюргерса имеют вид:

$$u(x,0) = f(x), \quad u(a,t) = l(t), \quad u(b,t) = r(t), \quad x \in [a,b].$$
 (2)

Нас интересует поведение решений в случае периодического возмущения на границе следующего вида:

$$u(x,0) = a$$
, $u(0,t) = a + b\sin(\omega t)$, $u(L,t) = a$, $x \in [0,L]$.

Для полубесконечного интервала $x \in [0, +\infty)$ вопрос о виде таких решений хорошо изучен. При значительной вязкости колебания экспоненциально затухают при (пространственном) удалении от источника возмущений. Однако во многих задачах нелинейной акустики возмущение u периодично по x, и нелинейные эффекты концентрируются вблизи источника и содержат там регулярно разнесённые в пространстве разрывы. Таким образом, при незначительной вязкости доминируют нелинейные эффекты и возникает убывающий пилообразный профиль, который постепенно расплывается (разрывы превращаются в скачки с увеличивающейся толщиной), превращаясь в затухающую волну – иногда на значительном удалении от источника. Достаточно адекватная асимптотика для таких решений предложена Фэем [].

Задача для конечного интервала, которая рассматривается в настоящей статье, приводит к аналогичным результатам, хотя решения имеют некоторые характерные особенности.

Работа является продожением [6], [7]. Численные расчёты проводились с использованием пакета Maple *PDEtools*.

2. ПИЛООБРАЗНЫЕ РЕШЕНИЯ УРАВНЕНИЯ БЮРГЕРСА

Как известно, для уравнения переноса общего вида ($x \in R$)

$$w_r + f(w)w_r = 0, (3)$$

момент начала градиентной катастрофы может быть найден следующим образом. Пусть $w=\varphi(x)$ - начальный профиль. Решение задачи (17) может быть представлено в параметрической форме $w=\varphi(\xi), x=\xi+F(\xi)t$, где $F(\xi)=f(\varphi(\xi))$. Характеристики $x=\xi+F(\xi)t$ будут пересекаться в случае $\varphi'(\xi)<0$, что приводит к многозначности w (опрокидыванию волны или градиентной катастрофе). Если неравенство выполняется на бесконечном интервале, то существует минимальное значение времени t_c , при котором возникает градиентная катастрофа. Можно определить t_c при помощи формулы $t_c=-1/F'(\xi_c)$ где $|F(\xi_c)|=\max|F'(\xi)|$ на интервале [a,b], для которого $F'(\xi)<0$.

Мы продемонстрируем, что градиентные катастрофы наследуются уравнениями типа Бюргерса на конечном интервале при некоторых начальных данных в случае слабой диссипации, добавленной к модели (17); см. [1-4].

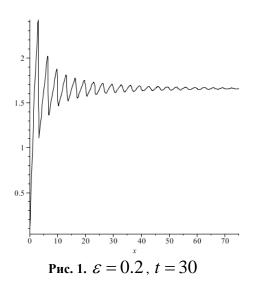
Для полубесконечного интервала и периодического возмущения в точке $x_0 = 0$ вида:

$$u(0,t) = u_0 + a\sin(\omega t)$$

асимптотика решения имеет вид:

$$u = \frac{a}{R} \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{sh[n(1+X)/2R]};$$

здесь R - число Рейнольдса, $\mathcal{G}=\omega(t-x/u_0)$ и X - безразмерная координата, Fay, [4],. График решения для $u_t(x,t)=\varepsilon^2u_{xx}(x,t)-2\cdot u(x,t)u_x(x,t),\ u(0,t)=1+2\sin(2\pi t)$ представлен на рис. 1. Можно заметить два эффекта, вносимых слабой вязкостью среды (диссипацией). Во-первых, амплитуда решения достаточно быстро убывает, и решение стремится к константе u_0 . Во-вторых, эффекты нелинейности (пилообразность, т.е. периодические разрывы производной) концентрируются вблизи источника возмущений и быстро сходят на нет за счёт всё той же вязкости.



В более сложной ситуации конечного интервала появляются некоторые новые эффекты. В частности, асимптотическое значение (или его среднее по времени, в том случае, когда стабилизация не достигается) будет отличаться от величины исходного возмущения u_0 на правом конце интервала.

84 А.В. Самохин

3. РАЗВИТИЕ ПИЛООБРАЗНЫХ РЕШЕНИЙ УРАВНЕНИЯ БЮРГЕРСА

В этом разделе обсуждается процесс развития пилообразных решений уравнения Бюргерса

$$u_t = \varepsilon^2 u_{xx} - 2uu_x \tag{4}$$

со следующими граничными условиями на интервале [0, L]:

$$u(t,0) = 1 + 2\sin(2\pi t), \quad \frac{\partial}{\partial x}u(t,L) = 0, \quad u(0,x)\Big|_{[0,L]} = 1.$$
 (5)

В рассмотренном примере $\varepsilon = 0.5$, L = 75.

На рис. 2 - 5 показан процесс установления периодического (повремени) профиля, начиная от стационарного. Выбранная вязкость довольно высока и подобие пилообразности возникает только вблизи источника возмущения на левом конце интервала. После (пространственного) затухания периодического возмущения процесс протекает в форме движения ударной волны постоянной высоты Δ вправо: как показано ниже, её величина равна

среднему значению $\frac{1}{T}\int\limits_0^T u^2(0,t)dt$.

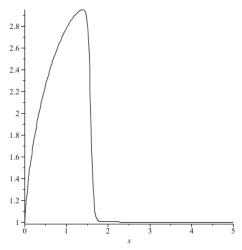


Рис. 2. t = 0.5

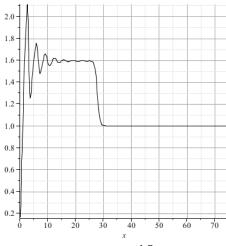


Рис. 4. t = 10

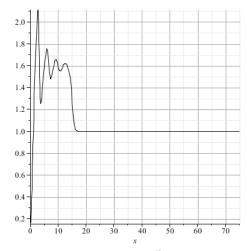


Рис. 3. t = 5

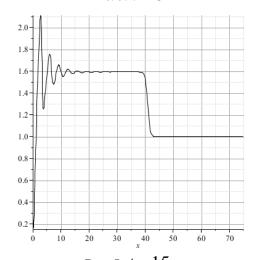
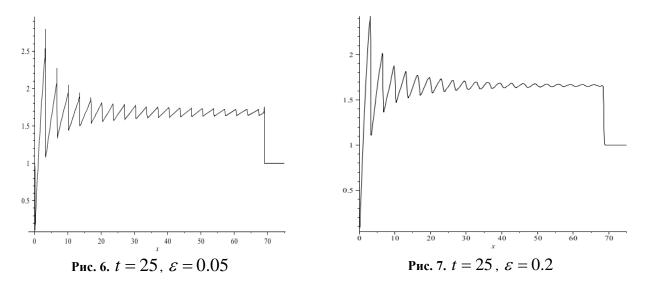


Рис. 5. t = 15

эти графики c тем, получается при значительно меньшей что $\varepsilon = 0.05$ диссипации. При прежних начально граничных условиях, профиль соответствующего решения представлен на рис. Убывание амплитуды идет пилообразный характер с меньшей скоростью, но графика сохраняется вплоть до интервала. Фронт распространения возмущения представляет правого конца собой ударную волну.



На рис. 7 видно, что передний фронт зубьев пилообразного решения постепенно расширяется от почти вертикального вблизи источника возмущения, перед тем как перейти в гладкий профиль на достаточном удалении; в этом случае

$$u(t,0) = 2 + 3\sin(2\pi t), \quad \frac{\partial}{\partial x}u(t,L) = 0, \quad u(0,x)\big|_{[0,L]} = 2, \quad \varepsilon = 0.15.$$

4. ОЦЕНКИ СКОРОСТИ РАСПРОСТРАНЕНИЯ И ВЫСОТЫ УДАРНОЙ ВОЛНЫ

Уравнение Бюргерса может быть записано в форме закона сохранения

$$(u)_{t} = (\varepsilon^{2}u_{x} - u^{2})_{x},$$

поэтому контурный интеграл по границе прямоугольника $\sum = \{0 \le x \le L, 0 \le t \le T\}$ равен нулю:

$$\iint_{\partial \Sigma} [u \cdot dx + (\varepsilon^2 u_x - u^2) \cdot dt] = 0.$$

Принимая во внимание начально-граничные условия, можно переписать это следующим образом:

$$\int_{0}^{L} u(x,0)dx + \int_{0}^{T} (\varepsilon^{2}u_{x}(L,t) - u^{2}(L,t))dt + \int_{L}^{0} u(x,T)dx + \int_{T}^{0} (\varepsilon^{2}u_{x}(0,t) - u^{2}(0,t))dt = 0.$$

86 А.В. Самохин

Вследствие диссипации при достаточно больших L и T решение на правом конце интервала приобретает постоянное значение A, которое совпадает со средним значением. Меняя порядок интегрирования и учитывая, что $u_x(\mathbf{L},\mathbf{t})=0$ по условию, получим:

$$\int_{0}^{L} u(x,0)dx + \int_{0}^{T} (\varepsilon^{2}u_{x}(L,t) - u^{2}(L,t))dt - \int_{0}^{L} u(x,T)dx - \int_{0}^{T} (\varepsilon^{2}u_{x}(0,t) - u^{2}(0,t))dt =$$

$$= u_{0}L - A^{2}T - AL - \int_{0}^{T} (\varepsilon^{2}u_{x}(0,t) - u^{2}(0,t))dt = 0,$$

ИЛИ

$$u_0 L - A^2 T - A L - \int_0^T (\varepsilon^2 u_x(0, t) - u^2(0, t)) dt = 0.$$
 (6)

Поделив на T, получим квадратное уравнение для определения A:

$$-A^{2} - A\frac{L}{T} - \frac{1}{T} \int_{0}^{T} (\varepsilon^{2} u_{x}(0, t) - u^{2}(0, t)) dt + u_{0} \frac{L}{T} = 0.$$
 (7)

Займёмся оставшимся интегралом, который представляет собой среднее значение подынтегральной функции. Поскольку $u(0,t) = u_0 + a\sin(\omega t), \ u_x(0,t) = a\omega\cos(\omega t)$, то

$$\frac{1}{T} \int_{0}^{T} (\varepsilon^{2} u_{x}(0, t) - u^{2}(0, t)) dt = \frac{\varepsilon^{2}}{T} a\omega \int_{0}^{T} \cos(\omega t) dt - \frac{1}{T} \int_{0}^{T} (u_{0} + a\sin(\omega t))^{2} dt.$$

Поскольку среднее по периоду для синуса и косинуса равны нулю, при больщих T с большой точностью получим, что искомый интеграл равен:

$$-u_0^2 - \frac{a^2}{T} \int_0^T \sin^2(\omega t) dt = -u_0^2 - \frac{a^2}{2T} \int_0^T (1 - \cos(2\omega t)) dt \approx -u_0^2 - \frac{a^2}{2T} T = -u_0^2 - \frac{a^2}{2}.$$

Квадратное уравнение (27) приобретёт теперь вид:

$$-A^{2} + u_{0}^{2} + \frac{a^{2}}{2} - A\frac{L}{T} + u_{0}\frac{L}{T} = 0.$$
 (8)

Отсюда $A = (-k + \sqrt{k^2 + 4u_0^2 + 2a^2 + 4u_0k})/2$, где k = L/T .

Отметим, что при $T \to \infty$ получим $A = \sqrt{u_0^2 + \frac{a^2}{2}}$, а при $L \to \infty$ получим, в согласии с результатами для полубесконечного интервала, $A = u_0$.

Для рассчитанных примеров $u(0,t)=1+2\sin(\omega t)\Rightarrow Approx\sqrt{1^2+2^2\,/\,2}pprox 1.7\,$ при $T\to\infty$.

Перейдём к определению скорости распространения возмущения (или скорости ударной волны). Известно, что для нелинейных волн скорость определяется амплитудой начального возмущения, в рассматриваемом случае, высотой первого горба (см. рис. 2). Эта скорость ≈ 3 сохраняется, как это видно из рис. 4 - 6 и далее.

Для аналитического определения высоты первого горба можно также воспользоваться тем, что его форма хорошо описывается решением Р. Хохлова [4], [5]:

$$u = \frac{a}{1+X} \left[-\mathcal{G} + \pi \cdot \text{th}\left(\frac{\pi R\theta}{1+X}\right) \right],$$

здесь
$$R=\frac{a}{2\omega \varepsilon^2}$$
 - число Рейнольдса, $\mathcal{G}=\omega(t-x/u_0)$ и X - безразмерная координата

5. ЗАКЛЮЧЕНИЕ

Численные расчёты позволяют не только обнаруживать новые эффекты, возникающие при решении уравнения Бюргерса на конечном интервале, но и экспериментально проверять асимптотические оценки, полученные аналитически. Отметим, что численное моделирование функций с разрывной производной является непростым делом, поскольку вблизи разрывов стандартные методы теряют устойчивость. Потеря устойчивости приводит к мультиосцилляциям и потере точности, не говоря уже о потере ясности. С этой проблемой удалось справиться за счёт адаптивной длины шага по пространственной координате (уменьшая шаг в 10-20 раз по сравнению со значениями по умолчанию).

REFERENCES

- **1. Dubrovin B., Elaeva M.** On critical behavior in nonlinear evolutionary PDEs with small viscosity // ArXiv: 1301.7216v1math-ph., 30.01.2013, 16 p.
- **2. Dubrovin B., Grava T. and Clein C**. Numerical study of breakup in generalized Korteweg de Vries and Kawahara equations // Siam J. Appl. Math, **71**: 4 (2011), pp. 983–1008.
- **3. Dubrovin B.** On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour // Comm. Math. Phys., **267** (2006), pp. 117–139.
- **4. Fay R.D**. J.Acoust. Soc. Am., Proc., **3**, 1931, pp. 222–241.
- 5. Rudenko O.V. Nonlinear sawtooth-shaped waves // UFN, 9 (1995), pp. 1011–1035 (in Russian).
- **6. Samokhin A.,** Gradient catastrophes for a generalized Burgers equation on a finite interval // Geometry and Physics, Elsevier, the Netherlands, **85** (November 2014), pp. 177-184

SOLUTIONS TO THE BURGERS EQUATION WITH PERIODIC PERTURBATIONS ON BOUNDARY

Samokhin A.V.

The asymptotic behavior of solutions of the Burgers equation with initial value - boundary problem on a finite interval with periodic boundary conditions is studied. The equation describes a dissipative medium, so a constant initial profile will evolve to a travelling-wave solution. Its asymptotic limit is periodic 'sawtooth' solution with periodical breaks of derivative, similar to the Fay solution on a half-line.

Keywords: Burgers equation, initial value - boundary problem, finite interval, sawtooth solutions.

Сведения об авторе

Самохин Алексей Васильевич, 1947 г.р., окончил МГУ им. М.В. Ломоносова (1971), доктор технических наук, профессор кафедры высшей математики МГТУ ГА, автор 40 научных работ, область научных интересов — уравнения математической физики, симметрии, законы сохранения.