УДК 656.021.2

АНАЛИТИЧЕСКАЯ МОДЕЛЬ РАДАРНОГО МОНИТОРИНГА ЦЕЛОСТНОСТИ ИНФОРМАЦИИ АЗН-В

В.Л. КУЗНЕЦОВ, В.В. ДУПИКОВ

В работе рассматривается возможный подход к решению задачи о повышении уровня целостности информации АЗН-В при использовании в качестве контролирующих данные, поступающие от системы обзорных радиолокаторов. Основная гипотеза проводимого анализа относится к тонкой структуре ошибок данных АЗН-В, которые делятся на медленно меняющиеся во времени ошибки (т.н. смещения) и шумоподобные процессы, характеризуемые малым в сравнении периодом процесса измерения временем корреляции. Получены оценки для вероятности пропуска отказов в работе АЗН-В и вероятности ложной тревоги.

Ключевые слова: целостность информации АЗН-В, риск целостности, вероятность пропуска отказа, вероятность ложной тревоги.

ВВЕДЕНИЕ

Автоматическое зависимое наблюдение вещательного типа (АЗН-В), функционирование которой основано на использовании информации, получаемой на борту воздушного судна (ВС) от глобальной навигационной спутниковой системы (ГНСС), рассматривается сейчас как перспективная система обслуживания воздушного движения [1].

В США и Европе уже к 2020 году начнется полномасштабное использование системы АЗН-В для целей УВД и будут введены запреты на полеты ВС, не оснащенных бортовым комплексом оборудования системы АЗН-В. В отдельных регионах Австралии, Канады, Китая, а также Индонезии в настоящее время наблюдение АЗН-В применяется в условиях отсутствия радиолокационного перекрытия. В Российской Федерации сейчас идут работы по проведению пилотных проектов использования АЗН-В в целях УВД, а широкомасштабное внедрение в практику УВД запланировано на 2020 год.

Согласно Федеральным авиационным правилам [2] и Правилам аэронавигационного обслуживания [3] система АЗН-В (точность и целостность) выше минимально установленного уровня. Однако проведенные недавно в Австралии исследования этого вопроса показали, что один из показателей целостности координатных измерений, передаваемых с борта ВС (защитный уровень в плане – HPL), в течение непродолжительного периода времени (5-10 минут) может опускаться ниже минимально допустимого порога [4].

В целях повышения характеристик готовности и непрерывности системы АЗН-В можно использовать альтернативный способ подтверждения целостности информации о координатах ВС с использованием функционирующих в настоящее время систем обзорной радиолокации (ОРЛ).

Сравнение информации АЗН-В и ОРЛ с последующей отбраковкой в соответствии с определенным выбранным правилом некоторых ненадежных данных АЗН-В может обеспечить требуемый уровень ее целостности.

В работе строится математическая модель целостности системы АЗН-В с контролирующей системой на основе данных ОРЛ, рассчитываются риск целостности информации АЗН-В и вероятность ложной тревоги. В основе модели лежит гипотеза о тонкой структуре возможных ошибок системы АЗН-В, представимых при анализе последовательности измерений в виде суперпозиции быстрых и медленных процессов.

1. ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ ПРИБЛИЖЕНИЯ МОДЕЛИ

Рассмотрим две независимые системы координатного наблюдения (АЗН-В и ОРЛ), позволяющие регистрировать положения ВС в воздушном пространстве. Обе системы при опреде-

лении координат целей могут допускать ошибки. Предполагается, что статистические характеристики этих ошибок, т.е. распределения плотностей вероятности отклонений местоположения BC по данным АЗН-В и ОРЛ от истинного положения BC известны. Допустимая величина ошибки АЗН-В - $R_{\rm c}$ - задана. При превышении этого порогового значения считается, что данные системы АЗН-В не могут быть использованы для предполагаемого вида обслуживания воздушного движения.

Наблюдатель сравнивает данные обеих систем, определяет расстояние между положениями BC, полученными разными системами наблюдения, и принимает гипотезу о том, что показания A3H-B не содержат недопустимых ошибок (превышающих порог R_c), если измеренное расстояние меньше некоторого порогового значения - DT, и отвергает эту гипотезу в противном случае. Вероятность ошибки первого рода - $P_{FA}(DT)$ - вероятность ложной тревоги, возникающей при нормальной работе A3H-B и порожденной неидеальностью гипотезы наблюдателя. Вероятность ошибки второго рода - $P_{IR}(DT)$ – риск целостности информации A3H-B, превышающей порог R_c . На допустимые ошибки первого и второго рода наложены ограничения – они не должны превышать некоторые заданные значения.

Требуется определить DT - величину порогового значения расстояния между метками, позволяющую наблюдателю с вероятностями ошибок первого и второго рода, не выше заданных, делать заключение о пригодности использования данных АЗН-В для предполагаемого вида обслуживания воздушного движения. Для простоты рассмотрим задачу в одномерном случае (ошибки и смещения лишь по одной координате).

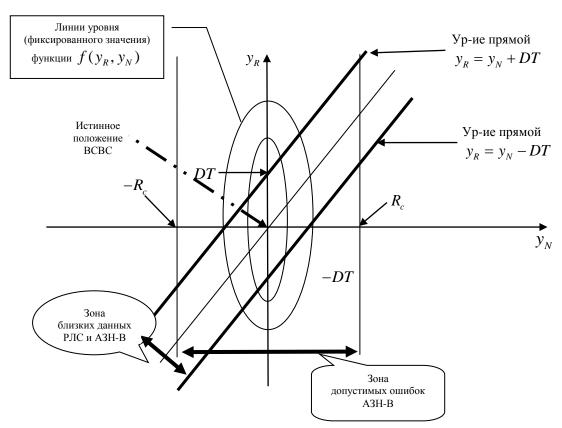
Такова в общих чертах постановка рассматриваемой задачи.

Остановимся на некоторых нюансах, связанных с тонкой структурой стохастики ошибок АЗН-В. Анализ показывает, что в каждой реализации последовательности измерений АЗН-В - $y_N = y_N(t_i)$, $i \in \mathbb{N}$ (развертке во времени для одного наблюдаемого ВС) можно выделить медленно меняющийся тренд смещений в данных АЗН-В – $< y_N >$ и быстрые шумоподобные отклонения - $[y_N - < y_N >]$. Величина каждой из этих составляющих ошибки измерений описывается своим законом распределения: медленные процессы характеризуются одномерным распределением – $w(\langle y_N \rangle)$, а шумоподобные ошибки задаются распределением – $\phi(y_N - < y_N >)$. Эти составляющие ошибок порождаются различными физическими механизмами и потому статистически независимы.

Таким образом, результирующее распределение ошибок АЗН-В - $f_1(y_N)$ представимо в виде:

$$f_1(y_N) = \int_{-\infty}^{\infty} w(\langle y_N \rangle) \cdot \phi(y_N - \langle y_N \rangle) d \langle y_N \rangle.$$
 (1)

Фактически в этом соотношении была использована связь


$$w(y_N | < y_N >) = \phi(y_N - < y_N >)$$
.

На практике при отбраковке показаний A3H-B рекомендуется использовать результаты последовательности из трех следующих друг за другом сравнений и данные бракуются, если, по крайней мере, два замера из трех свидетельствуют о том, что в показаниях A3H-B содержатся недопустимые ошибки, превышающие порог $R_{\rm c}$ Отметим, что отбраковка по последовательно-

сти измерений свидетельствует о том, что решающее правило основано на сравнении с допустимым порогом R_c не полной случайной ошибки - y_N , а только смещения $< y_N >$. Действительно, при принятии решения по длинной последовательности измерений шумовая составляющая ошибки обнуляется. Однако, учитывая конечность времени, отведенного на принятие решения, и величину периода процедуры сравнения, определяемую техническими характеристиками ОРЛ, эта последовательность ограничивается тремя измерениями. Но прежде чем использовать особенности описанной выше тонкой структуры ошибок АЗН-В, рассмотрим сначала пространство ошибок систем наблюдения как полезный инструмент для дальнейшего анализа.

2. ПРОСТРАНСТВО ОШИБОК СИСТЕМ НАБЛЮДЕНИЯ

Рассмотрим на плоскости декартову систему координат, по осям которой откладываются возможные величины ошибок регистрирующих систем: АЗН-В по оси абсцисс (переменная y_N) и ОРЛ – по оси ординат (переменная y_R) (рис. 1). По построению следует, что начало выбранной системы координат совпадает с истинным положением воздушного судна.

Рис. 1. Иллюстрация к методу расчета показателей целостности системы – вероятностей P_{FA} и P_{IA} , y_N — ошибки в данных АЗН-В, y_R — ошибки в данных ОРЛ

Любая точка на плоскости — точка с координатами (y_N, y_R) дает отклонения в положении ВС относительно его истинного положения (начала координат) по данным АЗН-В и РЛС, соответственно. Нетрудно видеть, что если точка лежит внутри вертикальной полосы $(-R_c < y_N < R_c)$, то система АЗН-В может использоваться для предполагаемого вида обслуживания воздушного движения, поскольку ошибки не превышают допустимого порога R_c . Если

точка (y_N, y_R) лежит внутри выделенной наклонной полосы, то показания ВОРЛ и АЗН-В близки, расстояние между метками не превышает DT. Здесь в качестве значения показания АЗН-В, подлежащего тесту на наличие неприемлемой ошибки, выступает мгновенное значение ошибки – y_N , а не ее усредненная составляющая – $\langle y_N \rangle$.

Поскольку измерения проводятся независимыми системами, то двумерная плотность вероятности выпадения точки на плоскость $(y_N, y_R) - f(y_N, y_R)$ факторизуется, т.е. распадается на произведение:

$$f(y_N, y_R) = f_1(y_N) \cdot f_2(y_R). \tag{2}$$

Пусть G_1 – область выделенной наклонной полосы на рис.1, ограниченной прямыми $y_R = y_N + DT$ и $y_R = y_N - DT$. Здесь DT - некоторый, пока не определенный по конкретному значению параметр, который определяет границу при принятия наблюдателем решения о пригодности использования данных АЗН-В для предполагаемого вида обслуживания воздушного движения.

Если точка (y_N,y_R) попала внутрь этой полосы, то расстояние между метками АЗН-В и ВОРЛ меньше критического значения DT, поэтому для событий, им соответствующим, наблюдатель принимает решение о пригодности использования данных АЗН-В. \overline{G}_1 – дополнение G_1 до полной плоскости, и ее точки (y_N,y_R) соответствуют событиям, которые воспринимаются наблюдателем как свидетельство недостоверности данных АЗН-В.

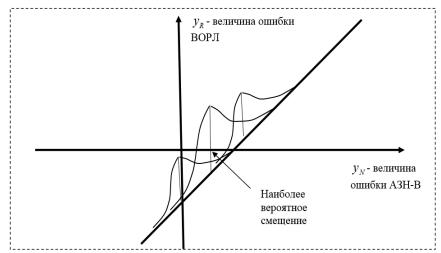
Пусть далее G_2 — область выделенной вертикальной полосы на рис. 1. \overline{G}_2 — ее дополнение до полной плоскости. Попадание точки (y_N,y_R) внутрь вертикальной означает, что ошибки системы АЗН-В не превышают допустимого порога R_c , а, следовательно, данные АЗН-В могут использоваться для предполагаемого вида обслуживания воздушного движения.

 Ω_1 — область пересечения областей G_1 и G_2 определяет множество событий (множество точек (y_N,y_R)), соответствующих тому, что и ошибки системы АЗН-В не превышают допустимого порога R_c , и наблюдатель дает аналогичное заключение.

 Ω_2 — область пересечения областей \overline{G}_1 и \overline{G}_2 определяет множество событий (множество точек (y_N,y_R)), соответствующих тому, что и ошибки системы АЗН-В превышают допустимый порог R_c , и система контроля подтверждает это заключение.

Область $\Omega_3 = \bar{G}_1 \cap G_2$ – область данных, соответствующих ложной тревоге. Действительно, точки, попадающие в эту область, соответствуют событиям, при реализации которых расстояние между метками АЗН-В и ОРЛ больше порога DT, т.е. согласно принятой гипотезе данные АЗН-В содержат неприемлемые ошибки, хотя в действительности они находятся внутри вертикальной полосы, и не превышают допустимый порог R_c . Отсюда следует, что $P_{FA} = P(\bar{G}_1 \cap G_2)$.

Область $\Omega_4 = G_1 \cap \overline{G}_2$ – область данных, соответствующих риску целостности информации АЗН-В. Вероятность этого события - $P_{I\!A} = P \left(G_1 \cap \overline{G}_2 \right)$. Интегрирование по областям Ω_i $i = \overline{1,4}$ плотности вероятности $f \left(y_N, y_R \right)$ дает все искомые вероятности.


Из рис. 1 видно, что хотя при уменьшении величины DT риск целостности информации АЗН-В – $P_{IR}(DT)$ и устремляется к нулю, однако при этом вероятность ложной тревоги – $P_{FA}(DT)$ стремится к вероятности исправной работы АЗН-В, т.е. к значению, близкому к единице, что неприемлемо.

Параметр R_c рассмотренного модельного представления зависит от требований, предъявляемых к уровню безопасности полетов, и при построении контролирующей системы варьироваться не может. Это внешнее ограничение в рассматриваемой задаче. Будем полагать также, что параметрами функций распределений ошибок АЗН-В и ВОРЛ мы тоже управлять не можем. Тогда единственным параметром, который может варьироваться при решении задачи о повышении целостности, является величина выбираемого порога DT.

3. АПОСТЕРИОРНОЕ РАСПРЕДЕЛЕНИЕ ОШИБОК АЗН-В, ВЕРОЯТНОСТИ ПРОПУСКА ОТКАЗА И ЛОЖНОГО СРАБАТЫВАНИЯ

Пусть в некоторый момент времени в результате проведенного измерения разность в показаниях АЗН-В и ОРЛ оказалась равной величине $s = y_R - y_N$. Как оценить смещение показаний АЗН-В в этот момент? Согласно принципу максимального правдоподобия в качестве значения этого смещения следует выбрать то, вероятность реализации которого максимальна.

Рассмотрим вновь двумерное пространство ошибок (рис. 1) и проведем на нем прямую $y_R = y_N + s$ (рис. 2). Любая точка на этой прямой может соответствовать истинным, но неизвестным нам значениям ошибок измерений АЗН-В и ОРЛ, имевшим место в процессе этого эксперимента. Согласно гипотезе о структуре ошибки, изложенной в п.1, АЗН-В в момент измерения будет характеризоваться некоторым смещением $\langle y_N \rangle$, значение которого сохранится при нескольких последующих измерениях, и шумоподобной ошибкой $[y_N - \langle y_N \rangle]$, величина которой при следующем измерении примет новое случайное значение, не коррелированное с предыдущим. Плотность распределения этой шумоподобной ошибки имеет вид $w(y_N | < y_N >) = \phi(y_N - < y_N >)$. На рис. 2 изображены несколько возможных вариантов распределений ошибок, соответствующих возможным «истинным» значениям смещения (на рисунке изображено три распределения, хотя настоящая мощность этого множества — континуум). Вероятность того, что смещение $\langle y_N \rangle$ примет некоторое конкретное значение, пропорциональна площади под соответствующей кривой.

Рис. 2. Множество возможных распределений ошибок при реализации процедуры сравнения данных АЗН-В и ОРЛ в некоторый момент времени t, зафиксировавшей разность показаний s

Согласно принципу максимального правдоподобия реализуется тот случай (то распределение), вероятность которого принимает максимальное значение. Другими словами, реализуемым будем полагать смещение, определяемое по правилу:

$$< y_N^* > = \arg \max_{< y_N >} \left\{ w(< y_N >) \cdot \int_{-\infty}^{\infty} dy_N f_2(y_N + S) \cdot \phi(y_N - < y_N >) dy_N \right\}.$$
 (3)

Соотношение (3) записано для произвольных распределений. В частном случае, когда распределения шумоподобных ошибок допускает аппроксимацию гауссовым законом, можно получить явный вид для смещения $< y_N^* >$.

Действительно, апостериорное распределение для величины $< y_N >$, согласно сказанному выше, имеет вид:

$$w(\langle y_N \rangle | s) = \frac{w(\langle y_N \rangle) \cdot \int_{-\infty}^{\infty} dx \cdot f_2(x + S + \langle y_N \rangle) \cdot \phi(x)}{W(s)}.$$
 (4)

Пусть $w(<y_N>)$, $f_2(y_R)$ и $\phi(y_N-<y_N>)$ - несмещенные гауссовы распределение с дисперсиями \sum_N^2 , σ_R^2 и σ_N^2 , соответственно. Тогда после несложных, но громоздких выкладок в (4) находим:

$$w(\langle y_{N} \rangle | s) = \frac{1}{\sqrt{2\pi} \cdot \tilde{\Sigma}} \times \exp\left\{-\frac{1}{2} \frac{\left(\langle y_{N} \rangle + s \cdot \Delta_{N}\right)^{2}}{\left[\tilde{\Sigma}\right]^{2}}\right\},$$
(5)

где

$$\tilde{\Sigma} = \frac{\sum_{N} \sqrt{\sigma_{R}^{2} + \sigma_{N}^{2}}}{\sqrt{\sigma_{R}^{2} + \sigma_{N}^{2} + \sum_{N}^{2}}}, \quad a \quad \Delta_{N} = \frac{\sum_{N}^{2}}{\sigma_{R}^{2} + \sigma_{N}^{2} + \sum_{N}^{2}}.$$
(6)

Попутно получается выражение для плотности вероятности распределения величины s:

$$W(s) = \frac{1}{\sqrt{2\pi} \sqrt{\sigma_R^2 + \sigma_N^2 + \Sigma_N^2}} \cdot \exp\left\{-\frac{1}{2} \frac{s^2}{\sigma_R^2 + \sigma_N^2 + \Sigma_N^2}\right\}.$$
 (7)

Из (5) следует, что наиболее вероятное значение смещения в данных АЗН-В - $< y_N^* >$, при зарегистрированной разности показаний s определяется по формуле:

$$\langle y_N^* \rangle = -s \cdot \left(1 + \frac{\sigma_R^2 + \sigma_N^2}{\sum_N^2} \right)^{-\frac{1}{2}}$$
 (8)

и соотношение (5) удобно переписать в виде

$$w(\langle y_{N} \rangle | s) = \frac{1}{\sqrt{2\pi \cdot \tilde{\Sigma}}} \times \exp\left\{-\frac{1}{2} \frac{\left(\langle y_{N} \rangle - \langle y_{N}^{*} \rangle\right)^{2}}{\left[\tilde{\Sigma}\right]^{2}}\right\}. \tag{9}$$

Если $< y_N^* >$ попало внутрь допустимой области $|< y_N^* >| \le R_c$, то делается вывод, что данные АЗН-В в норме. Однако $< y_N^* >$ есть лишь наиболее вероятное значение смещения, а значит, есть вероятность того, что истинное значение величины смещения окажется вне допустимой полосы. Это риск целостности. Вероятность такого события равна:

$$P_{IR}(s) = \int_{R_C}^{\infty} w(\langle y_N \rangle | s) d \langle y_N \rangle + \int_{-\infty}^{R_C} w(\langle y_N \rangle | s) d \langle y_N \rangle.$$
 (10)

С учетом (9) находим выражение для вероятности пропуска отказа АЗН-В при зафиксированном расхождении s:

$$P_{IR}(s) = \frac{1}{2} \left\{ Erfc \left[\frac{R_c + s \cdot \Delta_N}{\sqrt{2\tilde{\Sigma}}} \right] + Erfc \left[\frac{R_c - s \cdot \Delta_N}{\sqrt{2\tilde{\Sigma}}} \right] \right\}. \tag{11}$$

Здесь $\tilde{\Sigma}$ и Δ_N определяются соотношением (6).

Оценку риска целостности - $P_{IR}(DT)$ можно получить с учетом того, что s – случайная величина с найденным ранее распределением (7):

$$P_{IR}(DT) = \int_{-DT}^{DT} W(s) \cdot P_{IR}(s) \cdot ds.$$
 (12)

Аналогично вычисляется $P_{\scriptscriptstyle FA}(DT)$ – вероятность ложной тревоги :

$$P_{FA}(s) = \int_{-R_c}^{R_c} d\langle y \rangle \cdot w(\langle y \rangle | s), \tag{13}$$

$$P_{FA}(DT) = \int_{R_c}^{\infty} P_{FA}(s) \cdot W(s) \cdot ds + \int_{-\infty}^{-R_c} P_{FA}(s) \cdot W(s) \cdot ds.$$
 (14)

4. ОЦЕНКА ВЕЛИЧИНЫ ПОРОГОВОГО ЗНАЧЕНИЯ РАССТОЯНИЯ МЕЖДУ МЕТКАМИ

Дополнительная проверка данных АЗН-В, основанная на их сопоставлении с данными ВОРЛ, позволяет уменьшить риск целостности АЗН-В. Вероятность этого события, согласно (12) определяется в конечном итоге величиной DT – критическим значением расстояния между метками АЗН-В и ОРЛ. С другой стороны, заключение наблюдателя относительно величины ошибки измерения местоположения ВС системой АЗН-В, также не является абсолютно достоверным. Это выражается в возможности появления ложной тревоги (14), вероятность которой также зависит от DT и, очевидно, должна быть по возможности мала. Это означает, что задача максимизации целостности информационной системы АЗН-В представляет собой оптимизационную задачу с ограничениями:

$$P(DT) = 1 - P_{IR}(DT) \rightarrow \max \implies P_{IR}(DT) \rightarrow \min$$
 (15)

при условии

$$P_{FA}(DT) \rightarrow \min.$$
 (16)

Как следует из (12), (14), условия (15), (16) противоречивы и решение задачи может быть получено лишь в виде некоторого компромисса. Наиболее простой способ решения состоит в сведении двух критериев к одному с использованием т.н. функций штрафа, т.е. к минимизации некоторой новой функции:

$$\Phi(DT) = C_1(P_{IR}) \cdot P_{IR}(DT) + C_2(P_{FA}) \cdot P_{FA}(DT) \rightarrow \min.$$

$$\tag{17}$$

Коэффициенты в (17) представляют собой те самые штрафы, которые придется «заплатить» за то, что P_{IR} и P_{FA} будут отличны от нуля. Явный вид этих коэффициентов можно получить на основе экспертных оценок.

ЗАКЛЮЧЕНИЕ

В работе рассматривается возможный подход к решению задачи о повышении уровня целостности информации АЗН-В при использовании в качестве контролирующих данные, поступающие от системы ОРЛ. В основу анализа положена гипотеза о том, что случайный процесс, описывающий ошибки АЗН-В при рассмотрении конечной последовательности измерений, может быть представлен в виде суперпозиции медленного процесса (т.н. смещений) и белого гауссовского шума. Информация о расхождениях в показаниях АЗН-В и ОРЛ позволяет по методу максимального правдоподобия восстановить наиболее вероятное значение смещения и, соответственно, оценить вероятность того, что данные АЗН-В не содержат неприемлемых ошибок. Представление результатов в пространстве ошибок измерительных систем позволило оценить риск целостности информации АЗН-В и вероятность ложной тревоги.

ЛИТЕРАТУРА

- 1. Оценка наблюдения с использованием систем ADS-B и мультилатерации в целях обеспечения обслуживания воздушного движения и рекомендации по их внедрению. Циркуляр ИКАО 326-AN/188, 2013.
- **2.** Федеральные авиационные правила «Организация воздушного движения в Российской Федерации». Утверждены приказом Минтранса РФ от 25 ноября 2011 г. N 293.
- **3.** Правила аэронавигационного обслуживания. Организация воздушного движения. Монреаль, ИКАО, ICAO Doc 4444 ATM/501, Издание пятнадцатое, 2007.
- **4.** Australian ADS-B update. ADS-B SITF/12, Kolkata, India, 15-18 April 2013.

ANALYTICAL MODEL OF THE ADS-B INFORMATION INTEGRITY RADAR MONITORING

Kuznetsov V.L., Dupikov V.V.

The paper presents a probable solution of enhancing the ADS-B information integrity level using reference data from a secondary surveillance radar. The main hypothesis of the analysis relates to a fine structure of the ADS-B data errors, which are divided into slowly varying in time ADS-B errors (i.e. biases) and noise-like processes that are characterized by a small time correlation in comparison with the measurement process period. obtained The probabilities estimates of missed detection and false alert have been obtained.

Keywords: ADS-B information integrity, integrity risk, missed detection probability, false alert probability.

REFERENCES

- 1. Ocenka nablyudeniya s ispol'zovaniem sistem ADS-B i mul'tilateracii v celyah obespecheniya ob-sluzhivaniya vozdushnogo dvizheniya i rekomendacii po ih vnedreniyu. Cirkulyar ICAO AN/188, 2013.
- **2.** Federal'nye aviacionnye pravila «Organizaciya vozdushnogo dvizheniya v Rossijskoj Federacii». Utverzhdeny prikazom Mintransa RF ot 25 novabrya 2011 g. N 293.
- **3.** Pravila aehronavigacionnogo obsluzhivaniya. Organizaciya vozdushnogo dvizheniya. Monreal', ICAO Doc 4444 ATM/501, Izdanie pyatnadcatoe, 2007.
- **4.** Australian ADS-B update. ADS-B SITF/12, Kolkata, India, 15-18 April 2013.

Сведения об авторах

Кузнецов Валерий Леонидович, 1949 г.р., окончил МГУ им. М.В.Ломоносова (1972), доктор технических наук, заведующий кафедрой прикладной математики МГТУ ГА, автор более 100 научных работ, область научных интересов – методы математического моделирования в задачах распространения излучения в пространственно неоднородных случайных и периодических средах, УВД, безопасность полетов.

Дупиков Валентин Владимирович, 1982 г.р., окончил МГТУ ГА (2005), начальник сектора ФГУП Гос-НИИ «Аэронавигация», автор более 30 научных работ, область интересов – системы связи, навигации и наблюдения/организации воздушного движения, моделирование.