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FLATNESS CONDITIONS FOR SYSTEMS WITH TWO INPUTS

V.N. CHETVERIKOV!

Flat systems with 2 inputs are investigated. Our approach is based on invertible differential operators and
deformations of structures on diffieties of control systems. Invertible differential operators of size 2«2 are described. The
order of a flat output is estimated by the order of the corresponding invertible differential operator linearizing the control
system. The minimal order of invertible differential operator linearizing the system is estimated by the order of its
deformation.
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1. INTRODUCTION

Flat control systems were introduced by Fliess, Levine, Martin, and Rouchon [1]. Later,
it was shown that many classes of systems commonly used in nonlinear control theory are
flat [2]. Besides, control design for flat systems was developed (see [2]). These facts explain
the interest in looking for flatness conditions. In the case of one input, flatness conditions are
well known (see [2]). In the general case, checking whether a given system is flat still remains up an
open problem.

Using geometric methods, Aranda-Bricaire, Moog, and Pomet introduced an
infinitesimal Brunovsky form for nonlinear systems and obtained a necessary and sufficient
condition for flatness [3]. Namely, flatness of a control system means existence of an
invertible linear differential operator of a certain type satisfying some conditions (see Theorem 2
below). In geometry of differential equations [4] the operators of this type are investigated and
are called C -differential. A description of invertible linear differential operators was recently
obtained in [5].

In this paper, we consider the case of two inputs. Our approach is based on results of [3] and
[5]. Here, the description of invertible operators is generalized to the C -differential case. We also
show that invertible C -differential 2x 2 operators have a simple structure. The main results of the
paper follow from this structure.

2. FLAT SYSTEMS

Consider a system of the form
x = f(t,x,u), xeR", ueR", (1)

where t is the independent variable, the vector x=(x,..,X,) is a state, the vector
u=(u,..,u,) is a control, its coordinates u,...u, are inputs of the system, f=(f,...,f,)

is a smooth wvector function, and x=dx/dt. Here and throughout the following,
smoothness is understood as infinite differentiability. System (1) is said to be

regular if rank(of /ou)=m  for all considered values of the variables t,x,
and u.

1 This work was supported in part by RFBR grants 13-07-00736 and 14-01-00424.
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Let k be some nonnegative integer. We treat

. . (k)
t’X:[J""Xnaula'"3umauls"'aumsula"'aum

as independent variables and consider the space with these coordinates. By O® denote some domain
in this space.

A regular system (1) is said to be flat [1] in the domain O™ if there exist functions

y, =h(t,x,u,u,..,u®), i=1..m, (2)

defined in O™ such that

(i) the variables x and u can be expressed via t, the functions (2), and their time-derivatives
up to some finite order;

(i) any finite set of the functions (2), their time-derivatives, and the function t is functionally
independent.

In this case, the set of functions (2) is called a flat (or linearizing) output
of system (1).

We shall need the following notions and facts of geometric theory of differential equations [4].
To each system (1) assign the infinite-dimensional space R™ with coordinates

t,x,u@,u® ..,u® ), (3)

where u® denotes the vector variable corresponding to the |-th order derivative of u with

respect tot. By E” we denote a subset of the space R” with coordinates (3) in which
system (1) is defined and admissible states and controls lie. The coordinates (3) are called

canonical coordinates on E*. The above-introduced open sets O® can be understood as
the subsets of E”. Namely, the first coordinates of any point of this subset are bounded by the
conditions defining O" and the remaining coordinates are arbitrary. Such subsets of E* are also
denoted by O .

On the set E”, one introduces [4] the structure of a topological space and the usual differential-
geometric notions: smooth functions, vector fields, differential forms, etc. In particular, sets of the

form O and their arbitrary unions are called open sets in E*. A smooth function on E” is defined
as an infinitely differentiable function depending on a finite (but arbitrary) number of coordinates (3).

The algebra of smooth functions on E” is denoted by F(E) . A vector field on E” is a differentiation
of the algebra F(E) .
The vector field

i=1 1=0

0 < 0 Bw 0
D=—+) f(t,x,u)—+ u ——
61: ; J( )an zz ! aui(l)

on E” is called the total derivative with respect to t on E”. The Lie derivative of a function
ge F(E) along D coincides with the time-derivative of the function g according to system (1).
Phase curves of the vector field D coincide with graphs of solutions of system (1) in E”. Therefore,
the pair (E”,D) is chosen as a geometric model of system (1). It is called a diffiety (or an infinite
prolongation) of system (1).
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Let p € F(E). By d.e we denote the 1-form de—D(p)dt on E”, and by C*'A(E) we denote
the F(E) -module spanned by the 1-forms d.¢p, ¢ € F(E). By H, denote the F(E) -submodule of the
module C*'A(E) spanned by the 1-forms d.x,,...,d.x, . By definition, put H,,, ={weH, :DweH, }
for k > 0.

The dimension of the space of covectors w,, o€ H,, is finite for arbitrary k >0 and § € E™.
The dimension of some F(E)-submodule H of the module of 1-forms on E” at the point # € E” is
defined as the dimension of the space of covectors w,, weH. A point 8 E” is said to be

Brunovsky-regular (or simply B-regular) if in a neighborhood of & system (1) is regular and the
dimensions of the modules H, and H, + D(H, ) are constant for eachk >1.

Theorem 1. [3] In a neighborhood of a B-regular point for system (1) there exist p>0
functions s X of t, X, X, and m forms @,...0, € H, such  that

{de 21, dc 7, }o{D (®,) [k =1....,m, j >0} is a basis of the module C'A(E) .
In the case p=0, the set {@,...,®, } is called a B-basis or a linearizing system of differential

forms [3] at the B-regular point. The proof of Theorem 1 gives a procedure for finding a B-basis (see [3]).
A differential operator of the type

go+ng+gzD2+---+ ngka Jo>91s--» 9y € F(E),

is called a C -differential operator of order k. A C -differential operator acts on C*A(E). A matrix

whose entries are C -differential operators determines the operator on the set of columns of differential
forms. This operator is called a matrix C -differential operator. The order of a matrix C -differential
operator is the maximal order of its entries.

A matrix C -differential operator A is called invertible if there exists a matrix C -differential
operator V such that the compositions VoA and AoV are the identity operators. The matrix of an
invertible C -differential operator is square. The size of an invertible C -differential operator is its
matrix size.

Theorem 2. [3] Let 6 be a B-regular point for system (1), p=0, and {@,...®,}
be a B-basis at . System (1) is flat at a neighborhood of & if and only if in a neighborhood
of @ there exist m functions h,...h, on E” and an invertible matrix C -differential operator A
such that

The functions h,,...,h, form a flat output of system (1).

Let us set d.a =da—D(a)Adt for € A"(E). Necessary and sufficient flatness conditions
based on properties of the operator [d.,A*]oA are obtained in [6]. Let us recall the basic notations
from [6]. Amap A of A*(E) to A"(E) such that
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AQ) =y AQ+a, ADQ+...+ ¢, AD*Q, @, € C'A(E),
is called a CA -operator of order k and of grading 1 and is denoted by
ay Al+a, AD+..+a, AD .

A matrix whose entries are CA -operators of order <k is called a matrix CA -operator of
order <k. It is easily shown [6] that R =[d.,A™*]o A is a matrix CA -operator of grading 1 satisfying

the conditions
(dc —R)(a)) =0, (dc _R)O(dc _R)=O-

We say that this CA -operator R is a deformation of the differential d. determined
by the flat output (h,..,h,) if A is the invertible C-differential operator
from Theorem 2.

3. MAIN RESULTS

Let h={h,...,h,} be a flat output of system (1), o ={®,...,®,} a B-basis. Consider the
F(E) -modules

G, =Span_ {D'(@)]i=1..,m,j=01.., p},
F. =Span, . ,{d.(D°h)]i=1...ms=0,1...k},

where p>0,k >0.

An integer | is called the order of the flat output h with respect to the B-basis o, if F, =G,
but F, ¢ G, ,. Similarly, an integer L is called the order of the B-basis » with respect to the flat
outputh,if G, F_ but G, ¢ F_;.

Since the B-basis @ consists of 1-forms from H,, we see that the order of a flat output of the

form (2) is more than the integer k in (2).
We say that a B-regular point & € E” is d-regular for the pair (w,h) if in a neighborhood of &
the dimension of the module F, NG, is constant for each p=0,1...I and k=0,1...,L, where | and

L are the integers such that F, =G, and G, c F, .

Theorem 3. Suppose @ is a B-basis at a B-regular point @ for a flat system with 2 inputs, h is
a flat output such that the point & is d-regular for the pair (w,h), and k; is order of the deformation of
the differential d. determined by the flat output h; then

1) there exists a flat output h of order < K, with respect to the B-basis o ;

2) the order of the B-basis @ with respect to the flat output h is not more than K.
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4. INVERTIBLE DIFFERENTIAL OPERATORS

To prove the main result, we need a description of invertible C -differential operators.
Denote by G, the set of all C -differential operators of order < p whose matrices are of size

1xm. Clearly, G, is the F(E)-module under the multiplication defined by the equality
(fV)(Q)=TV(Q), feF(E),VeG,,

where Q isan m -column of 1-forms.
Let A bean invertible C -differential operator. Consider the F(E) -modules

F.={VeAlVeG,} k=0.
If A isthe invertible C -differential operator from Theorem 2, then
G, ={V(0)|VeG,} K ={V(0)|VeF1}

where o is the m -column of 1-forms a,,...,@,, forming a B-basis.

Each invertible C -differential operator determines the sequence of nonnegative integers
d., =dim(F NG,) for p,k>0. Further, we will classify invertible C -differential operators by the

sequences {d, , }.

A point < E” is said to be d-regular for an invertible C -differential operator A, if in a
neighborhood of & the dimension of the module F NG, is constant for each p=0,1..,1 and

k=0,1...,L,where | =ordA, L=ordA™.
The sequence {d, , } uniquely determines the sequence of integers

pk»p = %k,p _%k—l,p—lﬂ k7 p 2 05 (4)
Where

Zp = dk,p - dkfl,p o dk,p—l + dk—l,p—l
(put d, , =54, =0, if k<0 or p<0). Conversely, the sequence {p, ,} uniquely determines the
sequence {d, , } .

Note that {d, , } is an increasing sequence for large values of k or p, whereas the sequence
{ /., } has only a finite number of non-zero values (see below).

To describe the sequences of integers (4), we consider a finite set of squares in the first quarter of the
(k, p) -plane. Let corners of the squares have integer coordinates, and the sides of the squares be parallel to
the coordinate axes. Let us assign the integer —1 to the top right corner of each square, and the integer 1 to
the lower left corner. Note that the squares can intersect and even coincide. If there are points that are the
corners of several squares, then their integers are added together. The zero value is assigned to all other
integer points. We get the sequence of integers 5, ,, k>0, p>0. Suppose there exists a sequence of

nonnegative integers a, , such that the sequence { o, , = 5, , + &, } satisfies the following conditions:
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2. hp=0 > p;=0, (5)
i=0 =0

Z Pig =M, Z Poj =M, (6)
i=0 j=0
k-1 p-1

Pip = L p> Pri = Lep (7)
i=0 j=0

where k, p are arbitrary positive integers, m is some positive integer, z, , is the number of the

squares whose the top right corners are situated at the point (k, p).
A set of squares satisfying the above mentioned conditions is called a d-scheme of squares (or
simply a d-scheme). The corresponding sequence { p, , } is called the m -table of the d-scheme of squares.

Note that a d-scheme of squares can define more than one m -table. Besides, if we add an
arbitrary positive integer a to the value p, ,, then conditions (5) and (7) hold true, and the integer m
in (6) increases by a. Thus we can go from an m -table to an (m+a) -table.

The following theorem generalizes a result of [5] to C -differential operators.

Theorem 4. a) For any invertible C -differential operator in a neighborhood of a d-regular
point the sequence of integers (4) coincides with an m —table of some d-scheme.

b) If a d-scheme of squares has an m —table, then there are an invertible C -differential operator
such that its sequence of integers (4) coincides with the given m -table.

The proof of Theorem 4 is similar to the proof of the corresponding theorem of [5] and is based
on the algebraic theory of chain complexes and their spectral sequences.

Note that an invertible C -differential operator is not uniquely determined by its d-scheme of
squares. Let us show how to construct an invertible C -differential operator for a given d-scheme and
what structures still should be given for this construction. Suppose we have a d-scheme of squares and
a sequence of nonnegative integers a , such that the sequence {p,,=p,,+a.,} satisfies

conditions (5)—(7). By Z denote the set of all upper right corners of squares of the d-scheme, and by
Z, , the set of all elements of Z with coordinates (k, p). Besides, consider the set B of elements of

two types. The elements of the first type are the lower left corners of the squares. For any k, p>0
there are a _, elements of the second type with coordinates(k, p). There are no other elements
in B. It follows from equations (5)—(6) that the sum of the integers a, , is equal to m. So the set B
has m elements of the second type. Denote by B, 6 the set of all elements of B with
coordinates (k, p).

To each element be B, | assign a C -differential operator V, e G, satisfying the following
conditions. The operators V ,be B, 5,k >0, are generators of the module G,. Each element ze Z,
determines a relation of the form

: Z L 4oV, =0, (8)

k
i=1 j=l peB;

where [ , is a scalar C -differential operator of order <min{k —i,p— j} satisfying the following
properties:
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(1) for any p>0 using(8) for zeZ k>0, can be

expressed as

k >0, the operators V,,beB

k,p» k,p?

V=3 AoV, 9)

where A , are scalar C -differential operators;
(2) for any k>0 wusing (8) for zeZ
expressed as

p>0, the operators V,,beB, ,,p>0, can be

k.p> k,p?

(10)

where B, ; are scalar C -differential operators.

Further, both coordinates of any element of Z are positive. Therefore, the integer p,,
coincides with the number of elements in B, ;. From the first equality in (6) it follows that the set B
contains m elements whose the second coordinate is zero. Let b, ..., b, denote these elements.

Similarly, the set B contains m elements whose the first coordinate is zero. These elements are
denoted by by, ..., b. From (9) we get

m
VQFZ;,Arobj, i=L1.,m.
]=

The matrix operator A =(A;) is an invertible C -differential operator such that its sequence of
integers (4) coincides with the given m -table. Similarly, from (10) we have

Vbj=Z_1:A}il°Vb,u j=1.,m.

The matrix operator A™ = (A) is the inversion of A.
Finally, if P,Q is invertible C -differential operators of order0, i.e., invertible matrices of
functions, then the sequences { p, ,} for the invertible C -differential operators A and PoA-Q

coincide. It can be proved that any invertible C -differential operator can be constructed in such a way.
Thus an invertible C -differential operator is uniquely determined by its d-scheme, scalar C -
differential operators [ , from (8), and matrices P,Q. However this operator does not uniquely

determine operators [, , and matrices P,Q .

Theorem 5. If for a d-scheme of squares there exists a 2-table, then the d-scheme
has the form specified on Fig.1, where s is the number of squares (s>0), d, is the side

length of [I-th square (d,>0), (Z;di,z:ﬂdi) are the coordinates of the element
zez, O, ., z:di) are the coordinates of the element b eB,I=1..s, (D d.0)

i=l4 00 i=1 i”

S
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are the coordinates of the element b, eB, (O,Z;di) are the coordinates of the element

b, €B.
Theorem 5 follows from the definition of 2 -tables of the d-schemes.

Z
Q@------ 2
b: ______ ¢ ________ 92|
P - o
b b k

Fig. 1. d-Scheme with 2 -table

5. PROOF OF THEOREM 3

Consider a flat system with 2 inputs. Let o ={®,,®, } be a B-basis of the system, h={h,h,} a

flat output. Denote by A the invertible C -differential operator from Theorem 2. From Theorem 4 it
follows that the sequence {p, , } for the operator A™ coincides with a 2 —table of some d-scheme.

From Theorem 5 it follows that this d-scheme has the form specified on Fig. 1. Relation (8) for the
element z, € Z of this d-scheme has the form

Dzi~bi+1 Ovb +|:\Zivbi Ovbi +Dzi3bi—1 Ova - 0’ (11)

i+l

where [, , ~and [0, , are scalar C-differential operator of order 0, i.e., functions, [J, , is a scalar
C -differential operator of order <d,. Denote

Vi=V,, &=, ., O=-all,, ¢=L,, i=L..s.

From (9) it follows that a = 0. From (10) it follows that c, = 0. Therefore, relation (8) can be
rewritten as

V., =0oV.—a V., i=1..5s, (12)

where ¢, =c, /a, #0.
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vi+1 _ Et _ai
v, {1 0
Denote by A, the matrix C -differential operator

(q _aij. (13)

One has

V.

ViJ _
, 1=1..,s.

1 0

This operator is invertible and its inversion is

0 1
A=l 1 1|
-~ ~0
o o
By construction, V, =(01),V, =(10), and
vs+1
o [T Ao

is the invertible C -differential operator such that its sequence {p, ,} coincides with the 2-table.
Whence, there exist invertible matrices P,Q of functions such that

At =PoA o..0A 0Q.

Recall that operators P,Q, and [} are not uniquely determined. Let us show that we can
choose P,Q, and [ in such a way that ¢, =1 in (13) for i=1...,s. Namely, change P to P-O.*, Q
t0 0,0Q,and A, to O, oA, 0O, ], where

i-17

- 0

0 =[y'+l } i=L..5s,
0 7

Y1r+ Ve, are some nonzero numbers. Then the operator A~ does not change and we have

1 }/i+l
: o— —q. 1t
O, o A °Oi_—11 = i Vi I Yia |-
1 0

Puttingy, =1y, =1, and »,, =72 for i=1..,s, we get the required operators. Below we

@

consider the case o, =Li=1...,5.
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We see that the order of operators A and A™ is d; = Z; d,. Therefore the order of the flat output
h with respect to the B-basis @ and the order of the B-basis @ with respect to the flat output h are d..
Denote
A=PoA,o..0A, A=A Q.
Then
At=AoA, w=(AsA)(d.h)
and hence
R=[d.,A JoA=d. Ao A +Aod. Ao A0 A (14)

The order of operators A and A~ is d, —d,. Therefore, the order of CA -operator d.AoA™" is not
more than 2(d, —d,).

Let us show that the order of R is determined by the second summand in (14). Let the matrix
CA -operator d.Q-Q™ be

[qll q12

0, qzj’ q11aq12’Q219q22€C1A(E)-

Then an easy calculation shows that

d Aoilz{_l:lqn +0y, a }
¢ _q12 q11+q12Q ’

where o =L} 0;; — 0y, +0 0,0 0,03 +d 0.
Let (=g, +9,D+...+gD" and let us consider 3 cases.

Case 1: q,, # 0. The symbol of the B-basis o is

5 0 q g2D2d1 o
AO 12 o l,
[o o )4

and k, =2d,.
Case 2: ¢, =0,q9, =90,, —q,,9 +d.g = 0. The symbol of @ is

A 0 qudl ~-1
Ao o ,
and k, =2d, —d,.

Case 3: gq, — 0,9 +d.g =0. It can be proved that in this case there exists a flat output h of
order <d;.

Continuing this line of reasoning, we obtain the cases 1, 2 or a flat output of less order. In the
cases 1 and 2, k, >d,. This proves Theorem 3.
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YCJIIOBHE IIVIOCKOCTHU AJisA CUCTEM C IBYMS BXOJIAMUA
B.H. YerBepukos

W3yyarorcsi mIOCKHE CHCTEMbI ¢ JBYMsI BXoJaMu. Hamn moaxox ocHOBaH Ha oOpaTMbIX HuddepeHimnanbHbIx
oreparopax u aedopMaIuy CTPYKTyp Ha aud¢eororne cucteM ¢ ynpasieHneM. Omucanbl oopaTuMble nuddepeHnnansHbpe
oTiepaTophl pa3MepHOCTH 2x2 . BBenmeHo moHsTHe Beca 1yt B-6asuca. Eciin Bec B-6a3uca HyneBoM, TO IpoBepKa IIOCKOCTH
TpUBHaibHAa. MUHHMAIbHOE KOJIMYECTBO IJIOCKMX BBIXOJOB OILCHMBACTCS Ha OCHOBAHUH IOPSIKA COOTBETCTBYIOIIETO
obpatumoro uddepeHInansHOr0 oneparopa, JHHEApU3YIOIIEro CHCTeMYy C yIpaBieHHeM. MUHHMAIbHBIA MOPSI0K
obparumoro audHepeHIuaIBLHOTO ONepaTopa, JMHEAPU3YIOIIEr0 CHCTEMY, OLICHUBACTCS Yepe3 MOPSIIOK ero AedopMarium.

KaioueBnble cioBa: HenuHeliHble cucTeMbl, OECKOHEYHOE IPONOJDKEHHE, TUIOCKHE CHUCTEMBI, JIMHEeapU3aIus
JMHAMHYECKOH 0OpaTHOM cBsA3H, 0OpaTUMble An(depeHIInaIbHbIe ONepaTophl.



