
2015 НАУЧНЫЙ ВЕСТНИК МГТУ ГА № 218

УДК 629.735.33

HYBRID UPDATE / INVALIDATE SCHEMES

FOR CACHE COHERENCE PROTOCOLS

R.V. DOVGOPOL, M. ROSONKE

In general when considering cache coherence, write back schemes are the default. These schemes invalidate all other

copies of a data block during a write. In this paper we propose several hybrid schemes that will switch between updating

and invalidating on processor writes at runtime, depending on program conditions. This kind of approaches tend to improve

the overall performance of systems in numerous fields ranging from the Information Security to the Civil Aviation. We

created our own cache simulator on which we could implement our schemes, and generated data sets from both commercial

benchmarks and through artificial methods to run on the simulator. We analyze the results of running the benchmarks with

various schemes, and suggest further research that can be done in this area.

Keywords: performance, cache coherence, simulation, protocols, and memory.

1. Introduction

When the first microprocessor was released, its memory operations were relatively short when

compared to their corresponding arithmetic operations. Since then, microprocessors have been trending

strongly in the other directions, with today’s load and store operations being several orders of magnitude

slower than arithmetic operations. This so called ‘memory wall’ has only been exacerbated by the

coming of microprocessors. The added complexity of trying to synchronize memory operations and,

more importantly, cache contents between cores can tremendously slow down performance if not

executed intelligently. In this paper, we will discuss variations of the standard MOESI cache coherence

scheme that allow a cache to either update or invalidate during a write request, depending on the

situation.

1.1. Background

The most common and widely used state-based coherence scheme in multi-core machines is the

MOESI scheme. It consists of the following five states:

(M)odified - The cache block is the sole owner of ‘dirty’ data.

(O)wned - The cache block owns the ‘dirty’ data, but there are other sharers. A cache with a

block in the O state processes requests for that block from other cores.

(E)xclusive - The cache is the sole owner of clean data.

(S)hared - The cache is one of several possessors of a block, but it is not the owner and its data is clean.

(I)nvalid - The cache block does not hold valid data.

Invalidate schemes can be thought of a reactive approach to cache coherence. A cache will only

receive modified data from another cache if it asks for it. For a more proactive approach, one would

look to an update scheme. An update signal is sent with data in the same scenarios where an invalidate

scheme would send an invalidate signal, but rather than set their blocks to I, these cores would replace

their old data with the block’s new value and set it to the S state.

Both schemes have their advantages and disadvantages. It’s good to be proactive and use and update

scheme if you know that a block written to by one core will soon be read by another core, but updates

can also generate a lot of unnecessary bus traffic. Meanwhile, invalidate schemes will avoid this bus

traffic up front, but may still generate it later if they need to read a block that has been invalidated. Like

most things, it is possible that a good answer lies somewhere in between. Below, we propose hybrid

schemes that switch between invalidating and updating depending on the cores’ recent behavior.

56 R.V. Dovgopol, M. Rosonke

1.2. Previous Research

A fair amount of research was done on the advantages and disadvantages of updating or

invalidating in the mid-80s. Since then, most research has gone towards other aspects of coherence, but

many of these papers present a reasonable starting place. A method called the RB protocol was

proposed by Rudolf and Segall [1] for write-through caches. The scheme updates all other cores on the

write-through by default, but if two writes occurred back to back, data in all other cores would be

invalidated. This likely saved traffic for write-through machines, but as most machines today have

write-back caches, updating on every write would create an excessive amount of extra bus traffic.

While both above methods relied mainly on the patterns of their own cores, Archibald [3]

proposed a scheme that would take into account the actions of other cores. Once again, it updated by

default, but if any core had three writes to a single location without any other core accessing that

location, invalidation would occur instead. We also see a potential profit of hybrid schemes in various

fields such as large-scale systems with shared memory [4; 5], systems focused on vulnerability

assessment in civil aviation [6; 7], memory-optimized protocols [8], and others.

Our proposed schemes all begin by invalidating first, then allowing updates when certain criteria

have been met. They also heavily take into account the actions of other cores on the network.

2. Proposed Schemes

For our research, we decided to implement and compare several different schemes for

performance:

2.1. Invalidate-Only Scheme. This is the basic scheme that is used by many multicore systems.

When a cache writes to a block in the O, S or I state, it sends an invalidate signal to the network. All

other cores that receive this signal invalidate their copies of the block.

2.2. Update-Only Scheme. The opposite of the Invalidate-Only Scheme, caches writing to a

block in the O, S or I state send an update signal with data to the network. All other cores that receive

this signal update their copies with the correct value and set themselves to S.

2.3. Threshold Scheme. This is the first of our proposed hybrid schemes that we implemented

ourselves. In this scheme, each cache block carries with it an associated counter that is used to

determine whether updates or invalidates should occur upon a write. It is defined by the following

three scenarios:

1. Upon entry to the cache from main memory, counter is initialized to 0.

2. Whenever a read request is seen by a cache and it contains a valid block with matching address,

that block’s counter is increased by one.

3. After a block is successfully written to, its value decreases by one.

2.4. Adapted-MOESI. This scheme is the same as the Invalidate-Only scheme except that when

writing to a block that is in the O state, we send an update signal to the network rather than an

invalidate signal. Invalidation still occurs when writing to a block in the S or I state. As we will discuss

later, the Threshold Scheme works best with a threshold of 1. When a block’s counter is set to 1, its

state is almost always O, so this scheme attempts to approximate the effects of the threshold scheme

without the extra hardware.

2.5. Number of Sharers Scheme. Our final scheme is an alternate version of the threshold

scheme. Rather than keep track of read and write requests to a memory location, whether or not to do

an update is determined by the number of sharers any given data block has. If the number is above or

equal to a certain number of sharers, an update will occur in place of an invalidate. This is particularly

relevant due to its ease of implementation in directory schemes, whose popularity is on the rise in

highly parallel machines.

Hybrid update / invalidate schemes for cache coherence protocols 57

3. Simulation

3.1. Creating the Simulator

In order to simulate each of these different schemes, our team developed a cache simulating

program in C++. The program takes as input a list of loads and stores, with each string in the list

containing a load/store identifier, a core number, and an address. When run with one of these inputs,

the program simulates the operation of anywhere from 1 to 16 separate caches under the standard

MOESI protocol. During the run, it keeps track of the number of reads, writes, read request, write

requests (invalidates) and update requests at each core. We are looking at the total number of read

requests, write requests and update requests as our metric for performance. The total number of

requests is proportional to the amount of traffic that would exist on the network and therefore is an

acceptable means of judging performance.

3.2. Simulation Statistics

Our simulator can simulate anywhere from 2 to 16 caches at once. The simulator only uses one

level of caches. Beyond the first level, all caches are connected to main memory. Each cache contains

64 sets with 4 blocks in each set. Each dataset that we generated to run on the simulator contains

roughly five million loads/stores, so the metric used in this paper will be the total number of read

requests, invalidates and updates on all cores per five million instructions.

4. Generating Datasets

In order to run our simulator, we needed to generate files containing list of loads and stores to the

various cores. We chose to look at a diverse array of datasets in order to gain the best possible

understanding of our various schemes. Also, we made sure that generated datasets are reasonably

representative of their benchmark. Each of these benchmarks was run on 2, 4, 8 and 16 cores. Each

scenario was simulated using Invalidate-Only, Update-Only, Threshold, Adapted-MOESI and Number

of Sharers schemes.

4.1. Commercial Workloads

We certainly wanted to include datasets corresponding to commercial benchmarks. To do this, we

took advantage of the multi2sim timing simulator [9]. While it was very difficult to implement the new

hybrid schemes in the multi2sim timing simulator, we found that it was easy to adapt the simulator to

generate datasets. While running a timing simulation, we had the simulator output to a file the

information for five million consecutive loads and stores. We usually waited several tens of millions of

instructions for the parallel programs to get warmed up before starting the output. This way, we were

able to generate a more representative sample of the benchmark’s performance.

We generated datasets from the following four benchmarks in this way: Bodytrack – computer

vision algorithm. Dedup – compression of a data stream through local and global means. Streamcluster

– solves online clustering problem. Swaptions – uses Monte Carlo techniques to price a portfolio of

swaptions.

4.2. Artificial Workloads

Finally, we created a handful of pseudo-random datasets meant to represent common multicore

scenarios, such as many cores sharing a lock, many cores updating an array based on an element’s

neighbors, and a server model.

Our Locks dataset established 3 shared locks between any number of cores. Each core had a 10%

chance of accessing the lock. When doing so, the core would write to the lock to free it if it possessed

it. If it did not possess the lock, it would read from the lock and then write to take the lock if no one

58 R.V. Dovgopol, M. Rosonke

else possessed it. Only blocks containing the locks were shared between cores. All other data accesses

were restricted to their own private range of addresses.

Our Arrays dataset represents an array that is constantly updated by comparing elements. In this

scenario, an array element is read by one core, as are its neighbors above, below to the right and to the

left of it. Each core traversed through a row in this array, and during each cycle, a core would be

randomly chosen to process the next element in its row. Note that in a real program, this would result

in non-deterministic behavior.

Pseudo-Server dataset represents a very basic server-client model with public and private data

where one core is allowed to write to shared data and each other core may only read from it. The

server core can write to any block in the whole address range.

5. Results and Analysis

Below we present results and analysis for each scheme using the various benchmarks. Note that

all graphs only display the total sum of all bus transactions for each scenario. Detailed breakdown of

how those transactions are split between read requests, invalidate, and updates is provided in the

appendix [10].

5.1. Invalidate/Update Only Scheme

First, we will simply look at the base Invalidate-Only and Update-Only schemes. To limit the

amount of data presented in this section, only graphs for 8-core scenarios are presented, although

results from scenarios with other numbers of cores will be discussed. Additionally, as mentioned

above, the numbers presented are bus transactions per five million memory instructions. Results for the

commercial and artificial workloads are shown below (fig. 1).

5.2. Threshold and Adapted-MOESI Schemes

For the most part, there is a much smaller gap between the number of transactions that occur with

the Invalidate-Only scheme and the hybrid scheme (fig. 2). Still, for those benchmarks that originally

had a large gap, the Invalidate-Only scheme outperforms any hybrid scheme. For bodytrack, however,

the hybrid schemes of Threshold 1 and Adapted-MOESI (fig. 3) actually outperform the other schemes.

Since the benchmark was relatively dense, and because the update and invalidate schemes both

performed relatively well, having a smart way to choose whether to update or invalidate ends up

improving performance.

This logic stemmed from the observation that when the threshold of one was met, the block was

most commonly in the O state. In practice, however, this performed not better that a Threshold of one,

but at times would perform significantly worse. While blocks with a counter value that met the

threshold of one were often in the O state, not all blocks in the O state would necessarily have a

threshold value of one (fig. 4).

 Fig. 1. Results for the

commercial workloads

Fig. 2. Results for the

artificial workloads

 Fig. 3. Commercial work

workloads: all schemes

Hybrid update / invalidate schemes for cache coherence protocols 59

5.3. Number of Sharers Scheme

Finally, we will address the results gained from running each benchmark under the Number of

Sharers scheme (fig. 5).
The Number of Sharers scheme actually performs relatively well in most cases. Like the

Threshold scheme, it performs better on the bodytrack benchmark than either always updating or

always invalidating. Interestingly, the swaptions benchmark also sees improvement. Unlike the

Threshold scheme, this scheme has the benefit of always knowing exactly how many other caches

share data with a cache that is being written to, and this seems to be reflected as an increase in

performance on some benchmarks.
On other benchmarks, specifically streamcluster, this scheme seems to perform worse. Because of

how the updating works, the only way for a core not to become a sharer again is to be evicted from the

cache, since it will never be invalidated once updates start happening. If a core doesn’t access a block

regularly but also doesn’t evict it often enough, the scheme may update when it doesn’t need to. This

effect is reflected in the poor performance of the streamcluster benchmark (fig. 6).

Fig. 4. Results for the Fig. 5. Results for the Fig. 6. Artificials

artificial workloads commercial workloads workloads: all schemes

6. Final Points

In this final section of the paper, we will discuss what conclusions can be drawn from the above

analyzed data, what additional considerations need to be taken into account when judging the results,

and suggest further research that can be done in this area.

6.1. Conclusions

There certainly exist examples of benchmarks that perform better with either an Invalidate-Only

scheme or an Update-Only scheme. In some instances, such as the bodytrack benchmark, there exist

hybrids that perform better than either Invalidate-Only or Update-Only. In other instances, there are hybrid

schemes that will perform better than one of Invalidate-Only or Update-Only but worse than the other.
When considering different threshold values for the Threshold scheme, a value of 1 provided the

most dramatic result. High threshold values functioned almost identically to Invalidate-Only schemes.

Employing the Threshold scheme with a value of one resulted in the lowest number of transactions on

some benchmarks, while providing a reasonable compromise on others.
The Adapted-MOESI scheme did not perform as well as expected, as it led to more bus

transactions than the Threshold scheme in every scenario.
Finally, the Number of Sharers scheme performed reasonably well, especially when the required

number of sharers needed to perform an update was around half the number of cores. However, it

varied more from the average than the Threshold scheme did. Because of this, the Threshold scheme

60 R.V. Dovgopol, M. Rosonke

seems to be the correct choice for a scheme that will provide the optimal compromise between

benchmarks that perform best with more updates and those that perform best with more invalidates.

6.2. Further Research

Our simulator did not take timing into account, as we were only concerned with counting the total

number of transactions. Since the timing would vary from machine to machine, metrics such as IPC

would be less informative than the total number of transactions. In a real machine, the timing of

updates and invalidates plays an important role. Updating results in longer stores but potentially much

faster loads, while invalidation can do the reverse.
In addition, while the Adapted-MOESI scheme was meant to emulate a Threshold scheme with a

threshold value of one using less hardware, it ultimately failed in that endeavor. Still there is certainly

a way to get the same effect with significantly less hardware. Therefore, considering the hardware

costs when evaluating the various schemes might also be useful.
Finally, since our simulator used a snoopy protocol combined with MOESI, it would be

interesting to see how each of these schemes interacts with a directory-based protocol. It would be

especially interesting for the Number of Sharers scheme, as that scheme would be so easy to

implement in a directory-protocol.

REFERENCES

1. Rudolf L., Segall, Z. Dynamic Decentralized Cache Schemes for MIMD Parallel Processors. Proceedings of the

11
th

 ISCA, 1984, Pр. 348-354.
2. Karlin A., Manasse M., Rudolf L., Sleator D. Competitive Snoopy Caching. Proceedings of the 27

th
 Annual

Symposium on Foundations of Computer Science, 1986. Pр. 276-283.
3. Archibald J. A Cache Coherence Approach for Large Multiprocessor System. Proceedings of the Supercomputing

Conference, 1988. Pр. 337-345.
4. Sorin Daniel J., Mark D. Hill, David A. Wood. A primer on memory consistency and cache coherence. Synthesis

Lectures on Computer Architecture 6.3 (2011): 1-212.
5. Hashemi Bahman. Simulation and Evaluation Snoopy Cache Coherence Protocols with Update Strategy in Shared

Memory Multiprocessor Systems. Proceedings of the 2011 IEEE Ninth International Symposium on Parallel and

Distributed Processing with Applications Workshops. IEEE Computer Society, 2011.
6. Овченков Н.И., Елисов Л.Н. Оценка уязвимости объектов транспортной инфраструктуры и транспортных

средств в гражданской авиации // Научный Вестник МГТУ ГА. 2014. № 204. С. 65-68.
7. Елисов Л.Н., Громов С.В. Анализ современного состояния проблемы тренажерной подготовки летного

состава гражданской авиации // Научный Вестник МГТУ ГА. 2014. № 204. С. 15-18.
8. Loghi Mirko, Massimo Poncino, Luca Benini. Cache coherence tradeoffs in shared-memory MPSoCs. ACM

Transactions on Embedded Computing Systems (TECS) 5.2 (2006): 383-407.
9. Multi2Sim — A Heterogeneous System Simulator The Official documentation. http://www.multi2sim.org/

files/multi2sim-v4.2-r357.pdf.

10. Dovgopol R. Appendix – Detailed breakdown of transactions distribution over read requests, invalidate, and

updates. http://dovgopol.com/research/hybrid-schemes/appendix.

ГИБРИДНЫЕ СХЕМЫ ОБНОВЛЕНИЯ/АННУЛИРОВАНИЯ В ПРОТОКОЛАХ ПОДДЕРЖКИ

КОГЕРЕНТНОСТИ КЭША
Довгопол Р.В., Розонке М.

В системах поддержки когерентности кэша обычно используются схемы с отложенной записью. Такие схемы

аннулируют все копии блока данных в процессе записи. В данной работе представлено несколько гибридных схем,

которые переключаются между обновлением и аннулированием во время выполнения записи на процессоре, в

зависимости от условий самой программы. Такие подходы имеют тенденцию улучшать общую

производительность систем в различных областях информационной безопасности, включая гражданскую авиацию.

Предлагается симулятор кэша, реализующий предложенные схемы, и наборы данных из контрольных тестов и

методов, запущенных на симуляторе. Предлагаются пути дальнейших исследований в этой области.

Ключевые слова: производительность, когерентность кэша, моделирование, протоколы, память.

http://www.multi2sim.org/%20ﬁles/multi2sim-v4.2-r357.pdf
http://www.multi2sim.org/%20ﬁles/multi2sim-v4.2-r357.pdf
http://dovgopol.com/research/hybrid-schemes/appendix

Hybrid update / invalidate schemes for cache coherence protocols 61

Сведения об авторах

Довгопол Роман Владимирович, 1994 г.р., окончил Университет Меннесоты, США (2014),

сотрудник Microsoft USA, автор 10 научных работ, область научных интересов – информационная

безопасность, компьютерные архитектуры, алгоритмический анализ.

Розонке Мэттью, 1988 г.р., окончил Университет Миннесоты, США (2014), сотрудник

Amazon.com.Inc, автор 2 научных работ, область научных интересов – низкоуровневые системы,

оптимизация, информационная безопасность.

