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Аннотация: В работе рассматривается проблема идентификации параметров полной математической модели 
литийионных аккумуляторов (ЛИА), построенной на основе метода математического прототипирования энергетических 
процессов (ММПЭП). Актуальность темы обусловлена растущим применением ЛИА в авиации, в том числе в 
беспилотных авиационных системах, и необходимостью обеспечения надежности и долговечности аккумуляторов за счет 
точного прогнозирования их характеристик. Описан подход ММПЭП, который позволяет получать модели, строго 
соответствующие законам сохранения энергии и законам термодинамики, а также учитывать физико-химические 
особенности конкретных аккумуляторов. Особое внимание уделяется этапам идентификации параметров модели – от 
первичного приближения на основе экспериментальных данных до дальнейшей оптимизации с помощью современных 
численных методов и алгоритмов машинного обучения. Проводится анализ современных инструментов для 
идентификации параметров, включая алгоритмы XGBoost, Random Forest и нейронные сети. Описан опыт построения и 
обучения инверсной нейронной сети на синтетических данных, сгенерированных на основе полной модели ЛИА, и 
отмечены особенности подготовки и отбора обучающих данных для улучшения качества предсказаний. Проведен анализ 
чувствительности модели к различным параметрам, что позволило выделить наиболее значимые параметры для 
последующей идентификации и повышения точности диагностики состояния аккумуляторов. Представлена архитектура 
нейронной сети, сочетающая обработку временных рядов и статических признаков, и показаны результаты 
экспериментов по предсказанию ключевых параметров ЛИА. Отмечено, что полученная нейронная сеть может быть 
полезна на этапе грубой идентификации параметров, а дальнейшее развитие данного направления связано с 
использованием более сложных архитектур и интеграции физически информированных подходов для получения более 
точных математических моделей, которые могут быть положены в основу создания цифровых двойников литийионных 
аккумуляторов. 
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Abstract: This paper examines the problem of identifying the parameters of a complete mathematical model of lithium-ion 
batteries (LIBs), based on the Method of Mathematical Prototyping of Energy Processes (MMPEP). The relevance of this topic is 
due to the increasing use of LIBs in aviation, including unmanned aerial systems, and the necessity to ensure the reliability and 
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durability of batteries through accurate prediction of their characteristics. The MMPEP approach is outlined, which makes it 
possible to obtain models that rigorously comply with the laws of energy conservation and thermodynamics, while also considering 
the physicochemical characteristics of specific batteries. Particular focus is given to the stages of model parameter identification – 
from initial approximation based on experimental data to further optimization using modern numerical methods and machine 
learning algorithms. The study analyzes current tools for parameter identification, including XGBoost, Random Forest, and neural 
networks. It describes the development and training of an inverse neural network on synthetic data generated from the complete 
LIB model, and highlights the features of preparing and selecting strategies to improve prediction quality. A sensitivity analysis of 
the model to the various parameters is conducted, thereby enabling more targeted identification and improving the accuracy of 
battery diagnostics. The neural network architecture combining time-series processing and static features is presented, along with 
the results of experiments predicting key LIB parameters. It is noted that the obtained neural network can be useful in the rough 
parameter identification stage, whereas further developments will involve more complex architectures and integration of physically 
informed approaches to achieve more accurate mathematical models that can serve as the basis for creating digital twins of lithium-
ion batteries. 
 
Key words: lithium-ion battery, method of mathematical prototyping of energy processes, parameter identification, neural 
networks, sensitivity analysis. 
 
For citation: Gavrilenkov, S.I. (2025). On the issue of identifying the parameters of the complete model of lithium-ion batteries 
obtained through the method of mathematical prototyping of energy processes. Civil Aviation High Technologies, vol. 28, no. 6, 
pp. 37–52. DOI: 10.26467/2079-0619-2025-28-6-37-52 
 
Введение 
 

В последние годы литийионные аккуму-
ляторы (ЛИА) получили широкое распро-
странение в самых различных областях: от 
потребительской электроники до авиацион-
ной и космической промышленности. Высо-
кие удельные энергетические показатели де-
лают такие аккумуляторы особенно привле-
кательными для систем, требующих надеж-
ного и долговечного источника пита-
ния [1, 2]. Однако эффективное использова-
ние ЛИА подразумевает детальное понима-
ние протекающих в них физических и хими-
ческих процессов, а также постоянный мони-
торинг их текущего состояния для своевре-
менного диагностирования и прогнозирова-
ния остаточной емкости и остаточного ресур-
са при разных режимах работы [3, 4]. 

Одним из перспективных методов диагно-
стирования ЛИА является построение полной 
математической модели ЛИА, отражающей 
ключевые механизмы взаимодействия внутри 
ячейки: от кинетики электродных реакций до 
динамики распределения заряда на двойных 
слоях [5]. Такая математическая модель может 
быть основой цифрового двойника ЛИА [6]. 
Этот подход целесообразен при проектиро-
вании систем управления зарядом-разрядом, 
а также при реализации алгоритмов диагно-
стирования и продления ресурса [1]. 

Для получения корректной математиче-
ской модели ЛИА может применяться метод 
математического прототипирования энерге-
тических процессов (ММПЭП) [5, 7, 8]. Он 
представляет собой единый формализм, ос-
нованный на законах механики, электроди-
намики и современной неравновесной термо-
динамики, позволяющий строить уравнения 
динамик процессов различной физической и 
химической природы. В рамках ММПЭП па-
раметры аккумулятора не сводятся к аб-
страктным коэффициентам в эмпирических 
выражениях, а выводятся на основании физи-
ко-химических закономерностей и законов 
сохранения [7]. 

Вместе с тем для реальной эксплуатации 
важнейшей задачей является идентификация 
конкретных численных значений параметров 
полученной ММПЭП модели применительно 
к конкретному экземпляру ЛИА. В основу 
идентификации положено сопоставление ре-
зультатов вычислительного эксперимента с 
экспериментальными данными реальных 
ЛИА [9]. Однако, учитывая существенную 
нелинейность, а нередко и высокую размер-
ность полной модели ЛИА, наиболее целесо-
образным является обучение нейронной сети 
для параметров полной модели ЛИА. 
Нейросеть в этом случае имеет смысл инте-
грировать с полной моделью ЛИА [10]. 
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Целью данной статьи является анализ ме-
тодов идентификации параметров полной 
модели ЛИА, построенной ММПЭП, в том 
числе и с использованием нейронных сетей. 
Предполагается, что результаты работы бу-
дут способствовать созданию более точных 
алгоритмов диагностики и прогнозирования 
ресурса литийионных аккумуляторов для 
широкого круга приложений. 
 
Описание модели на основе метода 
математического прототипирования 
 

ММПЭП представляет собой единый фор-
мализм, позволяющий строить уравнения ди-
намики физических и химических систем, не 
противоречащие законам сохранения и тер-
модинамики [5, 11]. Факторы, определяющие 
динамику физических и химических процес-
сов, показаны на рис. 1. Для получения урав-
нений ММПЭП в численном виде задаются 
функциональные разложения для свойств ве-
ществ и процессов рассматриваемой системы 
с точностью до экспериментально исследуе-
мых постоянных коэффициентов с учетом 

соответствующих ограничений [3, 12]. Затем 
на основе результатов моделирования дина-
мики строится динамика измеряемых и кон-
тролируемых параметров.  

ММПЭП была построена полная модель 
ЛИА и выполнена ее программная реализа-
ция [4]. На вход упомянутой программной 
реализации подаются параметры функцио-
нальных разложений свойств веществ и про-
цессов в ЛИА, его начальное состояние и 
температура окружающей среды [4]. На вы-
ходе программа возвращает динамики на-
пряжения на клеммах, температуры внутрен-
него содержимого ЛИА, напряжений двой-
ных слоев и мембраны, то есть моделирует 
поведение аккумулятора во времени и сохра-
няет результаты [4]. Полученная в [4] модель 
ЛИА включает более 60 независимых коэф-
фициентов.  

Каждый из упомянутых параметров пол-
ной модели ЛИА либо напрямую связывается 
с физическими величинами (емкости, ЭДС, 
сопротивления двойных слоев и мембраны), 
либо является поправочным множителем/до-
полнительным коэффициентом, уточняющим 
поведение системы в разных диапазонах за-

 
 

Рис. 1. Математическая модель системы для решения практических задач.  
Пунктиром показаны задания аналитического решения 

Fig. 1. Mathematical model of the system for solving practical problems.  
The dashed line shows the tasks of the analytical solution 
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ряда, тока и температуры [4]. Предложенная 
в [4] полная модель ЛИА обеспечивает физи-
ческую корректность (не противоречит зако-
нам сохранения энергии и термодинамики) и 
требуемую точность при наличии достаточ-
ного числа экспериментальных данных. 

Для численной реализации построенной 
в [4] полной модели ЛИА возникает задача 
идентификации ее параметров. На практике 
параметрическая идентификация может быть 
разбита на два этапа: 

этап 1 – первичное приближение парамет-
ров. Целью этапа является получение грубых, 
но осмысленных стартовых значений пара-
метров математической модели на основе 
анализа измеренных характеристик аккуму-
лятора (например, U(t), I(t), T(t)); 

этап 2 – оптимизация параметров. После 
получения стартовых значений они уточня-
ются с использованием численных оптимиза-
торов, минимизирующих отклонение расчет-
ной модели от экспериментальных данных. 
Например, можно использовать градиентные 
методы, такие как LBFGS и Adam [13, 14], 
или метод байесовской калибровки на основе 
методов MCMC/NUTS [15]. 

Второй задачей является получение 
упрощенных аналитических выражений с ко-
эффициентами для конкретного реального 
аккумулятора, используя методы символьной 
регрессии [12]. Этот этап направлен на со-
здание упрощенной аналитической модели, 
которая аппроксимирует поведение ЛИА на 
основе ранее идентифицированных парамет-
ров, полученных методом математического 
прототипирования энергетических процес-
сов. Такие упрощенные аналитические моде-
ли строятся путем кусочно-аналитического 
упрощения исходных дифференциальных 
уравнений, полученных методом математи-
ческого прототипирования, с последующей 
идентификацией постоянных коэффициентов 
модели из экспериментальных данных. По-
добный подход обеспечивает минимальные 
вычислительные затраты и является основой 
для построения эффективных цифровых 
двойников, пригодных для задач мониторин-
га и управления аккумуляторами в реальном 
времени [16]. 

Для первичной оценки параметров модели 
по наблюдаемым данным рассмотрим следу-
ющие группы методов. 

XGBoost (Extreme Gradient Boosting) 
представляет собой ансамблевый метод ма-
шинного обучения, основанный на градиент-
ном бустинге деревьев решений. Он активно 
используется для задач регрессии и прогно-
зирования состояний литийионных аккуму-
ляторов, таких как оценка состояния здоро-
вья (State of Health, SOH) и остаточного ре-
сурса (Remaining Useful Life, RUL). В задачах 
параметрической идентификации аккумуля-
торов XGBoost применяется для построения 
инверсных регрессоров, обучаемых на синте-
тических наборах данных формата «динами-
ка системы → параметры аккумулято-
ра» [17, 18]. Настоящий подход обеспечивает 
высокую скорость вычислений и устойчи-
вость к шумовым данным, однако не учиты-
вает физические ограничения модели. Это 
может привести к появлению физически не-
корректных значений параметров при экс-
траполяции на условия, не входящие в обу-
чающую выборку. 

Random Forest (случайный лес) также яв-
ляется ансамблевым методом, который осно-
вывается на построении множества случай-
ных деревьев решений с последующим их 
усреднением (голосованием). Несмотря на 
высокую точность при небольшом объеме 
данных и устойчивость к переобучению, его 
возможности в задачах точной параметриче-
ской идентификации ограничены. Это связа-
но с отсутствием встроенного физического 
описания изучаемых процессов и относи-
тельно высокими требованиями к оператив-
ной памяти при работе с большим числом 
признаков [19]. XGBoost и Random Forest – 
универсальные табличные ансамбли: хорошо 
работают на статических признаках, но не 
умеют извлекать закономерности во времени 
без предварительного агрегирования или со-
зданных вручную признаков. 

Инверсные нейронные сети INN (Inverse 
Neural Networks) применяются для решения 
обратной задачи, где входом служат времен-
ные ряды (U, I, T), а выходом – параметры 
аккумулятора (θ). Особый интерес представ-
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ляют физически информированные нейрон-
ные сети (PINNs), которые учитывают в про-
цессе обучения физические законы, например 
уравнения теплопереноса и баланса заряда. 
PINN‑архитектуры обучаются так, чтобы 
предсказания не только соответствовали экс-
перименту, но и удовлетворяли системе диф-
ференциальных уравнений [20, 21]. Это дела-
ет их особенно подходящими для задач пара-
метрической идентификации аккумуляторов, 
позволяя избежать физически некорректных 
решений. PINN особенно эффективны для 
задач, где доступны неполные данные, и они 
обеспечивают интерпретируемость, что важ-
но для инженерных приложений. 

Исследования показывают, что инверсные 
нейронные сети, особенно физически инфор-
мированные нейронные сети (PINN), вероятно, 
наиболее подходящий выбор. Они интегриру-
ют физические законы, такие как дифференци-
альные уравнения, в процесс обучения, что де-
лает их эффективными для сложных задач па-
раметрической оценки. Они продемонстриро-
вали эффективность в оценке состояния заряда 
(SOC) и состояния здоровья (SOH), что связано 
с параметрами модели [20]. 

В сравнительных исследованиях нейрон-
ные сети с ансамблевым обучением и транс-
ферным обучением (DCNN-ETL) показали 
лучшую точность и устойчивость по сравне-
нию с Random Forest Regression, что под-
тверждает преимущество нейронных сетей 
для задач, связанных с состоянием батареи 
[19, 22]. 

Физически информированные нейронные 
сети довольно сложны в реализации, требуют 
специальных навыков в программировании, 
поэтому автором для решения задачи первич-
ного приближения параметров была предпри-
нята попытка создания более простой инверс-
ной нейронной сети для задач параметриче-
ской идентификации. Комплекс программ, ре-
ализующих эту идею, получен с использова-
нием LLM (большие языковые модели) 
Grok, ChatGPT o3, ChatGPT o4-mini-high,  
DeepSeek r1. 

Для создания и обучения нейронных сетей 
критически важным является правильно под-
готовленные данные. Такие данные были по-

лучены из программной реализации модели 
литийионного аккумулятора, описанного 
выше. 

Набор данных представляет собой раз-
рядные характеристики, полученные при раз-
личных (случайных) параметрах модели ли-
тийионного аккумулятора. Для получения 
случайных параметров ЛИА была создана 
программа генерации параметров. Генератор 
параметров литийионного аккумулятора 
строится по принципу случайного выбора 
значений из заданных диапазонов с последу-
ющей фильтрацией или корректировкой тех 
параметров, которые нарушают физические 
или инженерные ограничения. Такой подход 
позволяет автоматизировать процесс форми-
рования массивов данных для моделирования 
или обучения, исключая непригодные или 
противоречивые варианты. В начале каждый 
параметр выбирается из диапазона  
𝑝௜ ൌ ሾmin௜, max௜ሿ с равномерным распреде-
лением 𝑝௜~Uሾmin௜, max௜ሿ. Затем набор прове-
ряется по ряду физических соотноше-
ний (табл. 1). В случае несоответствия значе-
ния корректируются или отклоняются, и 
набор параметров формируется заново. В ре-
зультате сохраняется баланс между охватом 
пространства параметров и соответствия фи-
зико-химическим процессам.  

После получения разрядных характери-
стик каждого аккумулятора по полученным 
сгенерированным параметрам, встает вопрос 
оптимизации данных для обучения нейросе-
ти. С целью экономии вычислительных ре-
сурсов производился отбор наиболее инфор-
мативных сегментов данных. Для этих целей 
был реализован алгоритм автоматической 
обработки файлов, содержащих разрядные 
характеристики, извлекающий участки с 
наибольшей динамической активностью по 
напряжению и току. Это необходимо для 
формирования выборки, акцентированной на 
ключевых переходных процессах внутри ак-
кумулятора.  

Для каждого временного ряда выполняет-
ся извлечение трех ключевых сегментов – 
наблюдаемых параметров (рис. 2). 
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Таблица 1
Table 1

Физические ограничения генератора параметров 
Physical limitations of the parameter generator 
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Рис. 2. а – данные моделирования; б – данные моделирования после обработки; в – моделирование  
с переменной составляющей; г – данные моделирования после обработки 

Fig. 2. а – modeling data; б – modeling data after processing; в – modeling with a variable component;  
г – modeling data after processing 
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В случае несоответствия значения коррек-
тируются или отклоняются и набор парамет-
ров формируется заново. В результате сохра-
няется баланс между охватом пространства 
параметров и соответствием физико-хими-
ческим процессам.  

Один сегмент по току: 𝑑௧ ൌ |𝑥௧ െ
𝑥௧ିଵ|,  d଴ ൌ 0 – модуль разности между со-
седними значениями сигнала. Поиск макси-
мума 𝑡∗ ൌ argmax𝑆௧. Нахождение точки с 
наибольшими изменениями. Формирование 
отрезка 𝑡ୱ୲ୟ୰୲ ൌ max ቀ0, 𝑡∗ െ ቂ௪

ଶ
ቃቁ ,  tୣ୬ୢ ൌ

𝑡ୱ୲ୟ୰୲ ൅ 𝑤. Выделение отрезка длины w во-
круг максимума. 

Два сегмента, соответствующих макси-
мальному изменению напряжения (один в 
первой половине записи, другой – во второй): 
 
 

 𝑆௧ ൌ ∑ 𝑑୵/ଶ
௞ୀିሾ୵/ଶሿ ௧ା௞

.  
 
Суммирование изменений внутри окна 

длиной 𝑤. Все отобранные сегменты по вре-
мени объединяются, формируется итоговая 
таблица с привязкой к параметрам аккумуля-
тора и метаданными. 

 
Анализ чувствительности 
параметров 
 

Одной из основных задач при анализе по-
ведения модели литийионного аккумулятора 
на основе метода математического прототи-
пирования энергетических процессов являет-
ся оценка чувствительности выходных харак-
теристик модели к изменению ее параметров. 
Это позволяет выявить наиболее влиятельные 
параметры, точность предсказания которых 
станет важным критерием эффективности 
нейросети. 

Для фиксированного режима тока и эта-
лонного аккумулятора 𝐴୰ୣ୤ с параметрами 
𝜃୰ୣ୤ моделируется временной ряд напряжения 
на клеммах Ukl୰ୣ୤ሺ𝑡ሻ и температуры корпуса 
аккумулятора TBakk୰ୣ୤ሺ𝑡ሻ. Аналогично для 
аккумулятора 𝐴୫୭ୢ, в котором один из пара-
метров модели изменен на ±10 %, формиру-
ются временные ряды Ukl୫୭ୢሺ𝑡ሻ и 
TBakk୫୭ୢሺ𝑡ሻ. На основе этих данных вычис-
ляются интегральные разности: 

 
 

 Uklୱ୳୫ౚ౟౜౜
ൌ ෌ ሺ

ே

௜ୀଵ
Ukl୫୭ୢሺ𝑡௜ሻ െ Ukl୰ୣ୤ሺ𝑡௜ሻሻ; 

 
 Tbakkୱ୳୫ౚ౟౜౜

ൌ ׬ ሾTBakk୫୭ୢሺ𝑡௜ሻ െ TBakk୰ୣ୤ሺ𝑡௜ሻሿdt
௧೑

௧బ
. 

 
Изменение производится поочередно для 

каждого параметра. Программа вычисляет 
участки максимального влияния каждого па-
раметра и количественные различия между 
эталонной и модифицированной группами. 
Это позволяет определить наиболее значи-

мые параметры, снизить размерность задачи 
идентификации и повысить точность даль-
нейшего анализа. Таким образом был выяв-
лен ряд параметров наибольшего влияния на 
изменение напряжения и температуры акку-
мулятора (рис. 3). 
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Рис. 3. Влияние параметров 
Fig. 3. Impact of the parameters 

 
Однако следует учесть, что при измене-

нии только i-го параметра на ±10 % оценива-
ется только локальная чувствительность 
«один к одному» и игнорируется любое  
кроссвзаимодействие параметров. В много-
параметрической среде это может привести к 
«скрытому раскачиванию»: два (или больше) 
коэффициента изменяют напряжение в про-
тивофазе, их индивидуальные интегральные 
эффекты велики, но совместное действие 
практически взаимокомпенсируется, и ран-
жирование по ∆௜ дает неточную картину вли-
яния. В дальнейших исследованиях планиру-
ется учесть взаимосвязь параметров при 
идентификации, чтобы «скрытое раскачива-
ние» не перекочевало в нейронную сеть.  

После подготовки данных были сформу-
лированы следующие параметры нейронной 
сети. 

На вход подаются динамические характе-
ристики (временные ряды напряжения на 
клеммах аккумулятора (Ukl), температура 
аккумулятора (TBAkk), ток нагрузки (Icur), 
температура окружающей среды (Tokr). Эти 
временные ряды являются наблюдаемыми: 
они непрерывно измеряются установленными 
на аккумуляторе датчиками и поступают в 
нейронную сеть как известные входные сиг-
налы; их значения не входят в вектор иден-
тифицируемых параметров. Также подаются 
статические начальные параметры (не изме-
няющиеся во времени) начальная внутренняя 
температура аккумулятора (TInAkk0), 
начальная температура батареи (TBAkk0), 
начальный заряд аккумулятора (q0).  

Для улучшения информативности вход-
ных данных были сформированы дополни-
тельные признаки, такие как произведения 
напряжения и тока, разность температур, 
произведения времени на ток и напряжение, а 
также дискретные метки фрагментов времен-
ных рядов. Подготовленные данные были 
подвергнуты масштабированию при помощи 
алгоритмов стандартизации (StandardScaler), 
что способствует стабильности обучения и 
улучшению точности модели. 
 
Архитектура нейронной сети 
 

Используемая архитектура сочетает вре-
менные признаки (напряжение, ток, темпера-
тура) с дополнительными статическими ха-
рактеристиками и позволяет оценить физиче-
ски осмысленные параметры батареи, такие 
как емкости двойных слоев, сопротивления, 
коэффициенты теплопередачи, параметры 
мембраны и др. Реализация использует свер-
точные, рекуррентные и attention-слои, а так-
же стандартизацию входных данных, маски-
рование и смешанную точность вычислений 
(рис. 4). 

Входные параметры: 
𝑋ሺௗ௬௡ሻ ൌ ሼ𝑈𝑘𝑙ሺ𝑡ሻ, 
𝑇𝐵𝑎𝑘𝑘ሺ𝑡ሻ, 𝐼𝑐𝑢𝑟ሺ𝑡ሻ, 𝑇𝑜𝑘𝑟ሺ𝑡ሻ, 𝑡௡௢௥௠ሺ𝑡ሻሽ  – вре-
менные (динамические) параметры, где 
𝑈𝑘𝑙 – напряжение на клеммах аккумулятора, 
𝑇𝐵𝑎𝑘𝑘 – температура корпуса аккумулятора, 
𝐼𝑐𝑢𝑟 – ток разряда, 𝑇𝑜𝑘𝑟ሺ𝑡ሻ – температура 
окружающей среды, 𝑡௡௢௥௠ሺ𝑡ሻ – нормализо-
ванное время. 
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Рис. 4. Структура нейронной сети 
Fig. 4. The structure of the neural network
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𝑋ሺ௦௧௔௧ሻ ൌ ሼ𝑇𝐼𝑛𝐴𝑘𝑘0, 
𝑇𝐵𝐴𝑘𝑘0, 𝑞0, ׬ 𝑈𝑘𝑙 , ׬ 𝐼𝑐𝑢𝑟 , -𝐼𝑐𝑢𝑟|ሽ  – стати|׬
ческие параметры (не меняющиеся во 
времени), где 𝑇𝐵𝑎𝑘𝑘0 – температура корпуса 
аккумулятора в начальный момент времени, 
𝑇𝑜𝑘𝑟ሺ𝑡ሻ – температура окружающей среды в 
начальный момент времени, q0 – начальный 
заряд. 

Целевая функция: 𝑌 ൌ ሼ𝑝ଵ, 𝑝ଶ, … , 𝑝଺଴ሽ ∈
𝑅଺଴, где 𝑝௜ – параметры аккумулятора, вклю-
чая ЭДС двойных слоев в заряженном и раз-
ряженном состоянии – EbinpD, EbinpC, 
EbinnD, EbinnC; электрические и тепловые 
емкости – Cbin0p, Cbin0n, Cm, CBAkk, 
CInAkk; сопротивления – Rkl, Rbin0p, Rbin0n, 
Rm0; температурные и зарядовые поправки – 
α, β, rCRT, nRQ и др. 

Перед запуском процесса обучения подго-
тавливается и загружается csv – файл с дан-
ными динамических и статических парамет-
ров, при которых были получены первые. 
Далее происходит группировка по 
dynamicIndex (одна динамика разряда), за-
полняются пропущенные значения методом 
ffill. После этого формируется список после-
довательностей и стандартизация признаков 
по обучающей выборке. 

Генератор данных производит маскирова-
ние значений до заданной длины 𝐿 ൌ 2 100, 
нормализует и возвращает пару 
ቀ𝑋௦௖௔௟௘ௗ

ሺௗ௬௡ሻ , 𝑋௦௖௔௟௘ௗ
ሺ௦௧௔௧ሻ ቁ , 𝑦௦௖௔௟௘ௗ. 

Модель состоит из двух ветвей. 
Динамическая ветвь: Conv1D → 

LSTM → MultiHeadAttention → 
GlobalAveragePooling1D, где Conv1D выявля-
ет локальные закономерности во времени, 
LSTM извлекает временные зависимости: 
ℎ௧ ൌ 𝐿𝑆𝑇𝑀ሺ𝑥௧, ℎ௧ െ 1ሻ, MultiHeadAttention – 
контекстное внимание: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ሺ𝑄, 𝐾, 𝑉ሻ ൌ

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ௄೟

ඥௗೖ
൰ 𝑉, где Q(Query) – запросы, 

формируемые из последовательности, K(Key) – 
ключи, с которыми сравниваются запросы, 
V(Value) – значения, которые агрегируются 
по важности, 𝑑௞ – размерность ключей (и за-
просов), используется для масштабирования, 
𝑠𝑜𝑓𝑡𝑚𝑎𝑥 нормализует скалярные произведе-
ния, превращая их в веса внимания. 

Статическая ветвь: статические пара-
метры подаются на вход плотной (dense) 
нейронной сети Dense(64) → Dense(32) с ак-
тивацией ReLU.  

Цель этих слоев – трансформировать 
входной вектор в более выразительное скры-
тое представление, которое затем будет объ-
единено с признаками из временной ветви. 

После предварительной обработки каждая 
ветвь формирует собственный вектор при-
знаков. Далее они объединяются (конкатена-
ция) в единый набор признаков, который по-
дается на: concat → Dropout → Dense(256) → 
Dropout → Dense(128).  

Dropout (полносвязный слой) использует-
ся для предотвращения переобучения, увели-
чивая обобщающие способности модели. 
Выходной слой содержит линейную актива-
цию и предсказывает 60 параметров аккуму-
лятора: Dense (60, linear). 
 
Обучение модели 
 

Обучение разработанной нейронной сети 
проводится с использованием двух основных 
метрик: среднеквадратичной ошибки (Mean 
Squared Error, MSE) и средней абсолютной 
ошибки (Mean Absolute Error, MAE). 𝑀𝑆𝐸 ൌ
ଵ

ே
∑ ‖𝑦௜ െ 𝑦ො௜‖ଶ

ଶே
௜ୀଵ  и 𝑀𝐴𝐸 ൌ ଵ

ே
∑ |𝑦௜ െ 𝑦ො௜|ଵ

ே
௜ୀଵ , 

где 𝑦௜ – истинный вектор параметров ли-
тийионного аккумулятора для i-го объекта 
обучающей выборки, включающий значения 
идентифицируемых параметров полной мо-
дели, 𝑦ො௜ – вектор параметров аккумулятора, 
предсказанный нейронной сетью для того же 
объекта, N – число объектов в обучающей 
выборке, ‖∙‖ଶ

ଶ– квадрат евклидовой нормы. 
Соответствует сумме квадратов отклонений 
предсказанных значений параметров от их 
истинных значений по всем компонентам 
вектора. MSE эффективно отражает большие 
ошибки, поскольку они имеют квадратичный 
вес, что особенно важно для задач с высоким 
риском значительных отклонений. MAE вме-
сто квадрата берется абсолютное значение 
ошибки. MAE менее чувствительна к выбро-
сам и обеспечивает более равномерное штра-
фование всех ошибок, что делает ее полезной 
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дополнительной метрикой для оценки ста-
бильности и общей точности модели. Таким 
образом, опираясь на эти значения, нейросеть 
обучается. Она каждый раз считает ошибку, 
сравнивая свои ответы с правильными. Ис-
пользование MSE + MAE вместо классиче-
ского алгоритма Ньютона обусловлено сни-
жением вычислительной сложности при 
60-мерном пространстве параметров, устой-
чивостью к шумовым выбросам, а также воз-
можностью мини-батч-оптимизации на GPU. 
Быстрая локальная сходимость метода Нью-
тона достигается лишь при хорошем началь-
ном приближении и полных матрицах Гессе, 
что для рассматриваемой модели экономиче-
ски нецелесообразно. 
 
Результаты 
 

Для обучения был сформирован массив из 
1 000 различных сочетаний статичных пара-
метров (1 000 виртуальных аккумуляторов) и 
полученных по ним динамическим парамет-
рам (разрядные характеристики). По завер-
шении обучения средняя точность предсказа-
ния по выявленным наиболее влиятельным 
параметрам составила 30,6 %. Стоит отме-
тить, что небольшое абсолютное отклонение 
по некоторым параметрам могло дать боль-
шое отклонение в процентном отношении, 
например Rkl – сопротивление клемм акку-
мулятора (рис. 5). 

 

 

Заключение 
 

Разработанная нейронная сеть для иден-
тификации параметров полной модели ли-
тийионного аккумулятора продемонстриро-
вала перспективу применения нейросетевых 
методов в решении задач параметрической 
идентификации. Несмотря на сравнительно 
низкую общую точность предсказаний (около 
30,6 %), представленная модель может эф-
фективно использоваться для грубой оценки 
и первичного приближения параметров акку-
муляторов, что существенно сокращает за-
траты времени и ресурсов на первоначальный 
этап калибровки. Тем не менее для практиче-
ского применения и создания цифровых 
двойников аккумуляторов необходима более 
высокая точность идентификации. Для ее до-
стижения целесообразно продолжить работу 
по следующим направлениям. 

1. Внедрение физически информирован-
ных нейронных сетей (PINN), которые инте-
грируют физические законы и ограничения 
непосредственно в процесс обучения, значи-
тельно снижая вероятность физически некор-
ректных решений. 

2. Использование более сложных и глубо-
ких нейросетевых архитектур с многоуровне-
выми механизмами внимания (multi-head 
attention) и ансамблевыми подходами. 

3. Оптимизация процедуры подготовки 
данных, включая улучшение алгоритмов ав-
томатического отбора информативных сег-

 
 

Рис. 5. Диаграмма отклонения предсказанных параметров 
Fig. 5. Deviation diagram of the predicted parameters 
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ментов временных рядов и расширение набо-
ра дополнительных признаков. 

4. Применение трансферного обучения и 
тонкой настройки нейронных сетей, предва-
рительно обученных на крупных наборах 
синтетических данных, для повышения каче-
ства идентификации реальных аккумулято-
ров.  

Таким образом, предложенная модель яв-
ляется важным промежуточным этапом на 
пути к созданию высокоточных цифровых 
двойников литийионных аккумуляторов. 
Дальнейшие исследования должны быть 
направлены на интеграцию продвинутых ар-
хитектур и физически информированных 
подходов, которые обеспечат необходимую 
точность и надежность, востребованную в 
высокотехнологичных отраслях, таких как 
авиация и космонавтика. 
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