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Abstract: The service life of gas turbine engine (GTE) turbine blades with thermal barrier coatings (TBC) depends on many
factors, including the composition, structure and properties of the metal bond coating (MB). The positive effect of using TBC is
well known: an increase in the service life of the protected part or an increase in the working gas temperature in front of the engine
turbine. At the same time, it is also obvious that the development and implementation of new TBCs that use more efficient TBCs is
an urgent task. The efficiency and service life of TBCs are significantly affected by the following characteristics of the metal bond
coat: material, its thickness and microstructure, and application method. In order to select a rational metal bond coat of the TBC and
to assess its performance on turbine blades at high temperatures, a comparative analysis of the isothermal heat resistance of TBCs
with different versions of metal bond coats and at different operating temperatures was performed. The time 7,,, up to which the
total area of ceramic layer chips on the leading edge and trough does not exceed 30%, was adopted as the isothermal heat resistance
criterion. Tests of GTE process blades made of ZhS32VI alloy with TBCs with various metal bond coats applied to them using
serial technology were carried out at temperatures of 1100 °C and 1170 °C. The isothermal heat resistance test base was at least 500
hours. Four process blades with each of the studied coating options were tested. Analysis of the obtained test results showed that
TBCs with a NiCrTaY and AZh-8+CrAl sublayer have higher durability indicators. This effect is due to the presence of refractory
elements (tantalum and yttrium) in the MB, which create a diffusion barrier and slow down the growth of the AL,O; oxide film
formed on the metal layer. During the experimental studies it was established that the composition of the metal bond coat in the
TBC design significantly affects its durability. Thus, the absolute values of 7, can differ several times. With an increase in the
temperature of isothermal tests, a significant (23 times) decrease in the durability of the coating is observed. Therefore, the correct
choice of the MB composition allows you to reduce the level of stress-strain state at the boundary of the layers, increase the
adhesion strength, and thereby increase the durability of the TBC.
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npumenenust T3I1 oOuien3BecTeH: yBenuyeHHe pecypca 3allMIaeMOi JeTaly WK TOBBIIICHUE TeMIlepaTypsl pabodero rasa
nepe TypOuHON aBurarens. Bmecre ¢ Tem oueBHmeH M TOT (axt, 4To paspaborka M BHeapeHune HOBBIX T3II, koTopble
ucniosi3ytor  Oonee addexrrBHple MII, sBisiercss akTyansHOW 3amaueil. Ha sddexrnBHOCTs M monroseynocts T3I1
CYILECTBEHHOE BIMSHUE OKa3bIBAIOT CIEAYIOLUIME XapaKTEPUCTUKH METAUIMYECKOro MOACNOSA: MaTepuall, €ro TOJMIUHA U
MHKpPOCTPYKTypa, MeTon HaHeceHws. C menpio BbIOOpa palMOHAIBHOrO MeTammyeckoro moxacnos T3I1 u omeHku ero
paboToCIOCOOHOCTH Ha JIOTATKax TYpOMHBI TPH BBICOKMX TeMIIEparypax B paboTe BBHIIONHEH CPAaBHHUTEIBHBIA aHAIN3
M30TepMIYecKoil skapoctorikocth T3I1 ¢ pasnMYHBPIMKA  BapHaHTAMH METAUIMYECKWX TOACIOCB M TPH  Pa3IMYHBIX
SKCIUTyaTAIMOHHBIX TeMIeparypax. B kauecTBe KpuUTepHs M30TEPMUYECKOH JKAPOCTOMKOCTH TIPHHSATO BPEMS Tp,, 10 KOTOPOTO
CyMMapHas IUIOLI3Jb CKOJIOB KEPaMHYECKOTO CJIOSi Ha BXOMHOW KpoMke W Kopbite He mpeBbmuaet 30 %. Vcmbrranus
TexHoNormdeckux jomnarok I T/, mroroeneHHsx u3 cwiaBa JKC32BU, ¢ HaHeceHHBIMI Ha HUX IO cepuiiHoi TexHomornu T3I1 ¢
Pa3IMYHBIMA METAIMYECKAMA TONACTOSAMH ObUTM TipoBeAeHbI mpu Temmeparypax 1100 m 1170 °C. baza wucmbitanmii Ha
M30TEPMHUYECKYIO JKapOCTOMKOCTh cocTapisiia He MeHee 500 wacos. VcmbITaHMSM TOJBEPraiy IO YETHIPE TEXHOJIOTHYECKUE
JIOTIATKH C KaXKAbIM U3 UCCIIENYEMBIX BADHAHTOB ITOKPBITHH. AHAIIN3 MOJIyYEHHBIX PE3yJIbTaTOB UCIIBITAHHI IPOIEMOHCTPHUPOBA,
9yro Oojiee BbICOKHE MOKazarenu monroBedHoctd mmeroT T3I1 ¢ moacioem NiCrTaY m AXK-8 + CrAl. aussmi sddext
oOycnoBnieH HaimuveM B MII TyromiaBkux 25eMEHTOB (TaHTI M MTTPHH), KOTOpble cO31atoT AM(Qy3HOHHBIH Oapbep H
3aMEUIIOT POCT OOpa3yIOIISHCs HAa METAUTMYECKOM cjioe okcuiaHod mieHku AlO;. B mporecce SKCIeprMEHTAIBHBIX
HCCIIEIOBAHUI YCTAHOBJIEHO, YTO COCTaB METANIMUECKOro Moacios B KOHCTpykumu T3II cymiecTBeHHO BiMsAeT Ha €ro
JIOITOBEYHOCTh.  TaK, abCOMOTHBIE 3HAYEHMS T, MOIYT OTIMYATHCS B HECKOJIbKO pa3. C yBENMYEHHEM TEMIEPATYpbl
M30TEPMHUYECKHX HCIBITAHUM HaOMIOJAaeTCsl 3HAUMTENIbHOE (B 2—3 pa3a) YMEHBIICHHE JOJTOBCYHOCTH MOKpBITHA. [loaTomy
NpaBWIGHBIN BBIOOp coctaBa MIT 1o3BossieT CHU3UTH YPOBEHD HAIPSDKEHHO-IE(OPMUPOBAHHOIO COCTOSIHHSI Ha TPAHULIE CIIOEB,
YBEIUYUTh IPOYHOCTH CLEIUIEHNS, U TEM CaMbIM YBEIWYUTH JoJroBeuHocTs T3I1.

KioueBble c¢10Ba: JONTOBEYHOCTh, TEIUIO3AIIUTHOE TIOKPHITHE, METAUIMYECKUH TIOJACION, KepaMHYEeCKUil —CIIOH,
HU30TEPMUYECKAs )KaPOCTONKOCTb.

Jas uutupoBanusi: Camoiinenko E.B., Yrpenuno B.I'., [llecrakoB B.B. DkcnepumeHTanbHbIE UCCIEAOBAHUS BIIMSHUSI
XapaKTepPUCTUK  METAJUIMYECKOI'0 IOACIOS Ha  JIONTOBEYHOCTh  TEIUIO3AIUTHOTO TIOKPBITHS  JIOMATOK  TYpPOHHBI
razotypOuHHoro jBurareins / Hayqnsiii Bectauk MI'TY T'A. 2025. T. 28, Ne 5. C. 41-49. DOI: 10.26467/2079-0619-2025-
28-5-41-49

Introduction Let us assume that the heat flux intensity and
the blade design are given. In this case, the effi-

The durability of gas turbine engine (GTE) ciency of the thermal barrier coating is enhanced
turbine blades with thermal barrier coatings by selecting its optimal thickness and the specif-
(TBCs), operating at high temperatures, depends ic thermal conductivity value of the ceramic lay-
on many factors, including the composition, er. It is important to consider that under long-
structure, and properties of the metal bond coat. term cyclic loading (both thermal and mechani-
The determining characteristics of the bond coat  cal), degradation of the TBC occurs. This mani-
are its composition and the application method fests itself in oxidative processes at the interface

[1-6]. The positive effect of using TBCs is well- ~ between .the cergmic layer and the bonq coat,
established: it increases the service life of the chqnges in the microstructure of.the ceramic lay-
protected component or allows for a higher tem-  er itself (recrystallization, sintering), and effects

perature of the gas entering the turbine. At the of hot COY'TOSiOH and ?TOSiPH of the cerami.c lay-
same time, it is evident that the development and ~ er. In Pal’UCl}laT, the sintering of the ceramic lay-
implementation of new, more effective TBCs, er after cyclic thermal exposure (fig. 2) leads to

more efficient bond coats, and improved meth- the formation of defects such as pores, cracks,
ods for their application is a relevant and im- and vertical channels of the columnar structure,
portant task. A typical structure of a TBC is which causes an increase in the thermal conduc-
shown in Figure 1. tivity of the ceramic layer [1, 7-9].

Generally, the required temperature of the The process of TBC destruction begins from

blade base material for long-term operation is  the moment a portion of the ceramic layer spalls
achieved by improving the blade’s design, re- off the surface of the cooled blade, after which it

ducing the heat flux intensity, and selecting the  stops performing its main function — protecting
composition and thickness of the TBC. the blade metal from hlgh temperatures. Howev-
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Fig. 1. Typical structure of the TBC of a gas turbine engine blade
(top to bottom: heat flux, ceramic thermal barrier coating, metal bond coat, blade material)

BHCIITHUH BHJ] KCPAMHYCCKOI'O

CJI0A IIPpH CIICKAHNH

TPEOIHHLI B KEpaMHUYCCKOM
CJI0¢€

Fig. 2. Appearance of the ceramic layer ZrO,+8%Y,0; at the sintering site and when cracks appear

er, cracks in the ceramic layer of the TBC and
the formation of fragments of various sizes are a
reaction to operational stresses and surface de-
formations of the blades, which does not yet in-
dicate a loss of the TBC’s protective functions.

It is known [10-14] that one of the critical
areas of a TBC, directly affecting its durability,
is the interface between the ceramic layer and
the heat-resistant bond coat. During the opera-
tion of blades with TBCs, oxygen gets through
the ceramic layer to the bond coat, leading to its
oxidation and the growth of an aluminum oxide
(ALLO3) layer (fig. 3).

There are two primary pathways for oxygen
delivery to the interface known: gas transport
through the open porosity of the ceramic layer
and the diffusive movement of oxygen ions
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through anion vacancies in the zirconia dioxide
lattice. Oxides form on the surface of the bond
coat; their composition and structure depend on
the amount of oxygen supplied and the composi-
tion of the bond coat itself. This creates addi-
tional internal stresses at the bond coat interface,
reduces the adhesion of the ceramic layer, and
leads to its spallation. These processes are one of
the main reasons for TBC failure [2, 14].

The efficiency and durability of a TBC large-
ly depend on the characteristics of the metal
bond coat (material, its thickness and micro-
structure, application method). To select an op-
timal metal bond coat for the TBC and to assess
its serviceability on turbine blades under high
temperatures, this work presents a comparative
analysis of the isothermal heat resistance of
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Fig. 3. Typical microstructure of the TBC at the boundary of the ceramic layer and the metal bond coat after operation
(top to bottom: heat flux, Al,Oj;, ceramic thermal barrier coating)

TBCs with various bond coat options at different
operating temperatures.

Research methods

Tests were conducted on the GTE blades
made of ZhS32VI alloy, coated with TBCs ap-
plied via the standard production technolo-
gy [8-10, 15] but with different metallic bond
coats. The tests were carried out at temperatures
of 1100°C and 1170°C. The baseline for the iso-
thermal heat resistance tests was at least
500 hours. Four blades were tested for each vari-
ant of the coating. The tests were performed in
an ET-2 type furnace. During the testing, sam-
ples were selected for analysis after 5, 20, 50,
and subsequently every 100 hours.

During the isothermal exposure, the failure of
the TBC is practically independent of thermal
shock stresses (which only occur during loading
and unloading of the samples for inspection and
weighing). Consequently, it can be stated that in
this study, the determining role in the failure of
the ceramic layer is played by the oxidation pro-
cess of the bond coat, and changes in its compo-
sition and structure due to diffusion processes.

The time ‘L'puntil the total area of ceramic

layer spallation on the leading edge and the pres-
sure side does not exceed 30% was adopted as
the criterion for isothermal heat resistance. Par-
ticular attention was paid to the condition of the
heat-resistant bond coat in the areas of the
spalled ceramic.
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Research results

Various bond coat options were applied us-
ing the standard production technology. Subse-
quently, a ceramic layer of ZrO2-7%Y203 was
deposited on all blades via electron-beam evapo-
ration and condensation in a vacuum. The inves-
tigated coating variants and their thicknesses are
presented in Table 1. The test results are shown
in Figure 4 and Figure. 5.

Analysis of the obtained test results showed
that the TBCs with the NiCrTaY and
AZh-8+CrAl bond coats exhibited higher dura-
bility. This effect is due to the presence of re-
fractory elements (tantalum and yttrium) in the
bond coat, which create a diffusion barrier and
slow down the growth of the Al,O; oxide film
forming on the metal layer. Consequently, the
initial state of the coating is maintained for a
longer period.

It is evident that the integral durability indi-
cator of the multilayer coating significantly de-
pends on the choice of the bond coat. As can be
seen from Figure 4 and Figure 5, the absolute

values of T}, can differ by several times. With an

increase in the temperature of the isothermal
tests, a significant (2 to 3 times) reduction in
coating durability is observed. This can be ex-
plained by the increased intensity of diffusion
processes occurring between the TBC and the
base alloy, as well as the accelerated develop-
ment of oxidative processes.
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Table 1
Variants of the investigated coatings

Ne o/m THI DOKPBITHS ToamuHa, MKM
1 BCII-11+ZrO,+ 7Y,0; 100-150
2 CHII-2+ZrOx+ 7Y,0; 110-150
3 CUII-6+ ZrOx+ 7Y203 110-140
4 CrAlY + ZrO,+ 7Y,03 90-110
5 I'"MXA+ ZrO; + 7Y,03 110-120
6 NiCrTaY+ ZrO; + 7Y20; 100-120
o AX-8+CrAl+ ZrO; + 7Y,0; 110-140

(left to right: type of coating, thickness in microns)

Tp, Y _ -

100 1
90 T
80 T
70 + CIL-6 .
60 1 CIII-2
50 1
40 A
30 -
20 A
10 -
0

AX-8+CrAl

NiCrTaY

CrAlY TI'TIXA

BCJII-11 W

|

BApHAHT MCTAJUIMYCCKOTI'O ITOJICJI04A

Fig. 4. Diagram of coating tests for isothermal heat resistance at a temperature of 1100 °C
with variants of metal bond coatings
(top to bottom: time, hours; variant of metal coating)

At the higher temperature (1170 °C), pro- ultimately leads to an increase in compressive
cesses of cubic and tetragonal phase decomposi- stresses within the ceramic layer, followed by its
tion occur in the TBC’s ceramic layer, with the spallation from the bond coat.
possible appearance of a monoclinic phase. This
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Fig. 5. Diagram of testing coatings for isothermal heat resistance at a temperature of 1170 °C
with variants of metal bond coatings

Conclusion

It has been established through experimental
research that the composition of the metallic
bond coat in a TBC structure significantly influ-

ences its durability, T,. The absolute values of

T}, can vary by several times. A significant (2 to

3 times) decrease in coating durability is ob-
served with an increase in the temperature of the
isothermal tests. Therefore, the correct choice of
the bond coat composition helps to reduce the
stress-strain state level at the interface between
the layers, increase the adhesion strength, and
thereby enhance the TBC's durability.

Based on the conducted research, to increase
the durability of the entire TBC system, it is ad-
visable to use the AZh-8+CrAl metallic bond
coat. Its chemical composition is similar to that
of the nickel-based alloys used for manufactur-
ing blades in modern gas turbine engines. This
helps to reduce diffusion processes between the
bond coat and the base alloy. Furthermore, the
presence of refractory elements (tantalum and
yttrium) in the bond coat somewhat slows down
the growth of the oxide film, which also posi-
tively impacts the overall durability of the TBC.
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