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Abstract: The article deals with a method for aircraft maintenance planning based on advanced mathematical modeling
techniques. In the course of the research, a mathematical model for forecasting the failure rate of onboard equipment is de-
veloped and tested, designed to solve the problems of optimizing decision-making processes for maintenance on the basis of
reliability assessment of aviation equipment. The application of Poisson distribution regression in combination with polyno-
mial features allows to reveal the regularities of equipment failures, which depend on operating conditions and maintenance
history. For the study, a synthesized dataset was created to simulate different operational scenarios and equipment degradation
process. At the first stage, the data were freed from outliers and errors, then normalized to unify the scale of different vari-
ables. Next, the data were categorized according to the operating conditions, after which Poisson distribution regression was
applied to predict failures. Finally, an efficient maintenance plan that takes into account the predicted failures has been devel-
oped using an optimization algorithm. Validation of the model’s predictive capabilities and optimization of the maintenance
strategy are performed by comparing with archived data on previously performed work. The analysis of the results revealed
the peculiarities of the model operation, namely, the application of least squares regression with single coding demonstrates
perfect forecasts, which may indicate the need for model transformation and requires additional verification. At the same
time, alternative versions of the methodology revealed more realistic error and correlation limits, which also confirms the reli-
ability of the predictive models. The results of the study show that a combined approach using Poisson distribution regression
and polynomial signs can significantly improve the accuracy of forecasts. This method, in particular, has demonstrated its
effectiveness in modeling onboard equipment failures, which allows to optimize maintenance processes in order to reduce re-
pair costs. The obtained conclusions confirm the possibility of introducing more accurate proactive methods of maintenance
planning, which allows to improve aircraft reliability and reduce the inefficiency of their downtime on the ground.
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K ananu3y MeTo10B 1 MeXaHU3MOB MPOTHOCTHYECKOT0
MOJEJTUPOBAHUS HAIEKHOCTH OOPTOBOIr0 000PYI0BAHMS
NPH pelleHUuN 32124 IVIAHUPOBAHKUSA 00bEeMOB padoT
M0 TEXHUYECKOMY 00CIYKMBAHUIO BO3TYIIHBIX CY10B
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AHHoOTanms: B cTarbe paccMaTrpuBaeTcs METOJ INIAHUPOBAHHUS TEXHUIECKOTO 00CITY)KHBaHHUS BO3AYIIHBIX CYIOB HA OC-
HOBE YCOBEPIICHCTBOBAHHBIX METOJIOB MaTeMaTHYeCKOT0 MOAIEINPOBaHus. B Xozne nccnenoBanus paspaboTaHa u arnpo-
OupoBaHa MareMaTH4yecKasi MOZEJb NPOTHO3UPOBAHMS YaCTOTHI OTKAa30B OOPTOBOrO O0OOPYIOBaHMs, NPEAHA3HAYCHHAS
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JUISL peLlIeHns 3a1a4d ONTHMHU3AIUH [TPOLECCOB IPUHSTHS PEIICHHUH 110 TEXHUYECKOMY 00CITY’)KHBAaHHIO HAa OCHOBE OLIEHKH
Ha/ISKHOCTH aBUALIMOHHOM TexHHUKH. [IpuMeHeHue perpeccun pacnpenenenus [lyaccoHa B COYETaHUU C TOJMHOMHUAIIb-
HBIMH NIPH3HAKaMH [TO3BOJISAET BBIABUTH 3aKOHOMEPHOCTH OTKa30B 00OpYNOBaHMS, KOTOPbIE 3aBHUCAT OT YCIIOBHH BKC-
IUTyaTalud U MPEABICTOPHH TEXHHYECKOro oOcmyxuBaHus. J{Jsl McciieoBanus ObLI CO3/1aH CHHTE3MPOBAaHHBIH HAOOp
JIAaHHBIX, MOJICIIMPYIOLINH pa3IMuHbIe CLIEHAPHUHU SKCILUTyaTalluy 1 Mpolecc Aerpananuu ooopynosanus. Ha nepsom stare
JIlaHHBIE OBUIM OCBOOOXIIEHBI OT BHIOPOCOB M OLIMOOK, 3aT€M HOPMAJIM30BaHbI /Ul YHHU(PHUKANUK MacITaboOB pa3iind-
HBIX TIepeMeHHbIX. Jlajgee oHM OBUIM pa3eieHbl Ha KaTerOPHH B 3aBUCHMOCTH OT YCJIOBHH SKCIUTyaTallUH, ITOCIIE YEeTo
NpUMEHEeHa perpeccusi pacupexaeneHus [lyaccoHa Ui MPOrHO3HPOBAHMS OTKa30B. HaKOHeEI, ¢ MOMOIIBIO aIrOpuTMa
onTuMu3anuu ObuT pazpaboraH 3(h(EeKTUBHBIN IJIaH TEXHHUYECKOTO OOCITY)KMBaHUS, YUYUTHIBAIOIIMN MTPOrHO3UPYEMbIE
OTKa3bl. Banmaanus NporHOCTHYECKUX BO3MOMXHOCTE MOJIENN M ONTHMHU3ALMS CTPATETHH TEXHUYECKOTO0 00CITyKHBa-
HUSI OCYILECTBIIIOTCS ITyTEM COIIOCTABICHHUS C ApXUBHBIMH JaHHBIMHU O paHee MPOBEICHHBIX paboTax. AHaIU3 pe3yib-
TaTOB BBISBHJI OCOOCHHOCTH (PyHKIMOHUPOBAHUS MOJEIH, 2 MMEHHO: IPUMEHEHUE PErpecCUr METOIOM HaUMEHBIINX
KBaJ[paTOB C OAHOKPATHBIM KOAMPOBAHUEM JIEMOHCTPUPYET UeAIbHBIE TPOTHO3bI, YTO MOXKET CBUJIETEILCTBOBATh O HE-
00XOAMMOCTH TpeoOpa3oBaHUsl MOAEIH M TpeOyeT NOMOJHUTENbHON Bepudukauuu. B To ke BpeMs ajbTepHAaTHBHbIE
BapUaHTHl METOMOJIOTHH ITO3BOJIMIH BBIIBUTH 00JIee pealMCTUYHBIC NPEeiIbl MOTPEIIHOCTH U KOPPEIISLIH, YTO TaKXkKe
MOATBEPXKIACT HAZICHKHOCTh IIPOTHOCTHYCCKUX MOJeell. Pe3ynsraTel UcCIeJOBaHHs TOKAa3bIBAKOT, YTO KOMOMHHUPOBAH-
HBIH MOJXO0JI, NCHOJIB3YIOUINI perpeccuio pacnpezaeiaeHus IlyaccoHa n MOJMHOMHUANBHBIE TPU3HAKH, MO3BOJISIET 3HA-
YUTEJIHHO MMOBBICUTH TOYHOCTH MPOIHO30B. DTOT METO/I, B YACTHOCTH, NMPOAEMOHCTPUPOBAI CBOIO 3(h(HEKTUBHOCTD PH
MOZEIHPOBaHUU OTKa30B OOPTOBOro 00OPYIOBaHMS, YTO MTO3BOJISIET ONTUMU3HPOBATE MIPOLIECCHl TEXHUYECKOT0 00CITy-
JKHBaHUS C LEJIbI0 CHIKEHUSI 3aTPpaT Ha peMOHT. [lonydeHHbIe BBIBOIBI IIOATBEPIKIAI0T BO3MOXXHOCTh BHEIPEHUs Ooiee
TOYHBIX YIPEXJIAIOMINX METO0B ITannpoBaHus TO, 4TO JaeT BO3MOXXHOCTh IIOBBICHThH Ha/IEKHOCTh BO3JYIIHBIX CYZ0B
U CHM3UTh HEAPPEKTHUBHOCTH UX IIPOCTOEB Ha 3eMJIE.

KaroueBble cj10Ba: OL[CHKA HAIG)KHOCTH, MIaHupoBaHne TO BO3AyIIHBIX CY/I0B, perpeccus pacupenenenus [yaccona, mpo-
THOCTHYECKOe MojesimpoBaHue npoueccoB TO, MOIENMpOBaHNE CTOXACTUYECKUX MPOLECCOB, SKCIUTyaTallMoHHas (P dek-
TUBHOCTb, CTaHJAPThI 0€30MIaCHOCTH TOJIETOB, ONTUMH3aLus nporeccoB TO Ha OCHOBE JJAHHBIX, CTATUCTUUYECKUE METOJIBI
MIPOEKTHPOBAHUS HAC)KHOCTH.

Jost nutupoBanus: Orynsoyn B.U. K aHanu3y MeTomoB 1 MEXaHH3MOB HPOTHOCTHYECKOTO MOJEITMPOBAHHS HaJCKHOCTH
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Introduction maintenance strategies [3—5]. The purpose of this
study is to develop a mathematical model that al-
The aviation industry imposes high require-  lows estimating the reliability parameters of on-

ments on the reliability and safety of flights due to  board equipment and facilitating the formation of a
the potential negative consequences of technical = maintenance program that meets industry standards

failures. Of particular importance is the reliabili-  for flight safety and operational efficiency [6].

ty of aircraft onboard equipment, which has a di- The main objectives of this study are:

rect impact on flight safety. Maintenance planning 1) development of a mathematical modeling

plays a key role in ensuring optimal performance = method for predicting the reliability of aircraft

and reliability of aircraft systems. Modern avia-  equipment;

tion equipment is becoming increasingly complex, 2) application of the accumulated experience

which requires the introduction of new, more ad-  for parameterization of the developed model for

vanced methods of maintenance planning [1, 2]. the purpose of reliable forecasting of failure rate
One of the most active scientific directions is  and volumes of required maintenance.

mathematical modeling, which allows to perform As part of the literature review, the known re-

quantitative analysis of onboard equipment reli-  search results on different approaches to assessing

ability taking into account various factors such as  the reliability of on-board aircraft equipment are
failure statistics, operating conditions and applied  considered.
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The following sections of the article will exam-
ine in detail the mathematical methods used, pres-
ent the modeling results, and analyze the impact of
the developed maintenance planning program on
flight safety and the reliability of aircraft operation.

The aviation industry has traditionally paid
special attention to reliability issues. Numerous
studies demonstrate the effectiveness of statistical
methods such as Poisson regression and Weibull
analysis for failure prediction [7]. These methods,
which have proven their effectiveness in various
industries, provide a basis for improving mainte-
nance planning in aviation. The introduction of on-
board condition monitoring systems [8, 9] has con-
tributed to the accumulation of significant amounts
of operational data, which has opened new pros-
pects for the development of predictive mainte-
nance based on data analysis models [10, 11].

Modern advances in mathematical modeling
have led to the development and implementation of
more sophisticated methods, including stochastic
models, for predicting reliability and determining
maintenance requirements for complex systems.
These models take into account not only mean time
between failures data, but also operational param-
eters affecting component degradation processes.

Nevertheless, the problem of integrating these
models into a comprehensive maintenance plan-
ning system that meets the specific requirements
of flight safety standards remains relevant. This
study aims to solve this problem by synthesiz-
ing classical statistical methods with modern ap-
proaches of mathematical modeling to develop an
effective maintenance planning system.

Principles of analysis and modeling

This section presents a description of the
mathematical model developed within the frame-
work of this study. The model is based on the
Poisson process, a widely used approach to mod-
eling countable data for rare events, which include
technical systems failures [12].

The mathematical model of onboard equip-
ment reliability is based on the time dependence
R(t). To calculate the failure rate A(t), the Poisson
distribution regression method is used, which is
based on statistical analysis of product failures
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data. This method helps to predict the probabili-
ty of product failures depending on the operating
time and a number of other factors, and is deter-
mined by the following formula

A(t) = f(/R(t) =

=Cxp (Bo +Bx, +B,x, +"‘+kak)’

where M) is the expected failure rate, B, B, B,, ..., B,
are regression coefficients, and xi, X2, ..., Xk are
predictors (e.g., operating hours, operating condi-
tions, etc.).

where f(t) is the probability density function
of the time-to-failure distribution.

To calculate A(t), statistical product failures
data are used, and the distribution regression pa-
rameters are estimated using the maximum likeli-
hood method.

Maintenance planning is formulated as an op-
timization problem, the goal of which is to mini-
mize the expected downtime D(t), determined by
the following formula

t
D(t)= [ (1=R(s))ds,
where R(s) is the reliability function at time s.

Maintenance activities are scheduled at times
that minimize D(t), taking into account operation-
al constraints.

The Poisson distribution regression method
was chosen to analyze rare events such as equip-
ment failures. This method is appropriate when
events occur rarely and can be described in terms
of a counting process. The advantage of the Pois-
son distribution regression is its ability to accu-
rately model the relationship between failure rates
and flight hours [12].

The dependent variable y, (number of events)
for the i observation is assumed to obey the Pois-
son distribution, with A, representing both the
mean and variance of the distribution for the i”
observation.

The relationship between the mean value of
A and the predictors is established by means of a
log-linear model of the form

log (A;) = x{ B, 3)

where X; is the vector-string of predictors for the i
observation, B is the vector-column of regression
coefficients.

(1)

2
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This model allows estimating the influence
of various factors on the failure rate of onboard
equipment.

The basic Poisson distribution regression
model is not always accurate enough to solve the
research problems. To take into account non-linear
dependencies between predictors and response,
polynomial functions were added. These func-
tions are created using polynomial transformers
that expand the original feature vectors [13]. This
approach improves the flexibility and accuracy of
the model, especially when analyzing complex
and nonlinear relationships. The use of polynomi-
al features contributes to a better fit of the model
to the original data and improves the accuracy of
predictions, which is critical for predictive main-
tenance tasks.

The basic statements and assumptions when
using polynomial features include:

1) polynomial transformation — for a given set
of predictors x, = [x,, x,, ..., x,] polynomial fea-
tures are formed by generating all possible poly-
nomial combinations of predictors up to a given
degree d;

2) extended feature vector — the initial feature
vector x, is augmented with polynomial terms, for
example, for two predictors x, and x, at degree
d =2 the extended feature vector takes the follow-
ing form

(poly) [

(4)

1, X, X, X0, X, X, 5 X ]

i1 il

where the components of the vector include:

— constant (1);

— linear terms (x;,, x,, );

— quadratic terms (x;, X, );

— product of predictors ( x;,x;, ).

The use of an extended feature vector allows
to take into account non-linear types of interac-
tions between predictors, which is especially im-
portant when analyzing complex systems such as
aircraft on-board equipment.

The Poisson distribution regression model
uses polynomial signs to account for complex rela-
tionships between predictors. The process begins
by expanding the feature space, which involves
transforming the original data to a higher dimen-
sion. The next step is to construct a logarithmic
linear model taking into account the new features,
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and estimate the parameters using the maximum
likelihood method (MLE). This approach allows
taking into account more complex dependencies
between variables, improves the accuracy of fore-
casts and has the following form

o T
log () = x™Y" B, (5)

where x"" is the extended polynomial feature
vector.

To optimize computing resources and simpli-
fy the implementation, the mathematical model
with polynomial features is limited to the second
degree. Let us consider in more detail the mathe-
matical description of the model with polynomial
features of the second degree, which includes:

1. Initial vector of predictors
X, = [1 X1, X; ]

(6)

2. Extended polynomial feature vector (de-
gree d = 2)
(poly) [ (7)
3. Logarithmic linear model with polynomial
features

log( ) Bo +B1 Xt +B2 X, +
+B3xn + B4xil‘xi2 + BS'xiZ'

1,x,, %, xxlz,x]

i1 il

®)

4. Linear predictor expressed through polyno-
mial signs

n, =log (7\.1) = XEPOMTB = Bo + leil +

)
+B,x,, + B3xi21 +Byx;x, + Bsxizz'

5. Mean value (and at the same time disper-
sion) of the Poisson distribution

A, =exp(n,). (10)

6. Logarithmic likelihood function for the
Poisson distribution regression model logarithmic
likelihood is defined by the following expression

log L(B;) = Xitq [yidog (A) —A; —log (¥;D].(11)

Substituting the expression for A, from equa-
tion (11) into equation (12), we obtain the expand-
ed form of the logarithmic likelihood function of
the form
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log L(BY) = Tty [y (x™ B) — exp (x™" ;) — log (i1)].

7. Maximum likelihood estimation (MLE), in
which the coefficients B, are estimated by maxi-
mizing the logarithmic likelihood function using
a formula of the form

B. = arg maxlog L(By). (13)

The maximum likelihood f method allows
to find the optimal values of the coefficients [,
which most fully correspond to the observed data,
which provides a reliable basis for predicting the
failure rate of onboard equipment, taking into ac-
count the nonlinear interactions between the fac-
tors.

Thus, the Poisson distribution regression
model with polynomial signs allows to take into
account non-linear dependencies between predic-
tors and failure rate of onboard equipment. This
approach is especially effective when analyzing
complex technical systems, where interrelations
between factors may be more complicated.

The choice of polynomial features of the sec-
ond degree is conditioned by the desire to balance
between increasing the accuracy of the model and
refusal from retraining the program. Polynomials
of the second degree allow to take into account
nonlinear dependencies, while preserving the in-
terpretability of the model.

Extending the feature space to second degree
polynomials provides a compromise between the
complexity of the model and its ability to reflect
nonlinear interactions. This makes it possible to
improve the accuracy of failure prediction with-
out excessive complication of computational pro-
cesses.

When applying this model to the tasks of
forecasting the technical condition of aviation
equipment, the following aspects should be taken
into account:

1. Predictor selection — the parameters most
relevant to assessing the reliability of specific sys-
tems and components must be carefully selected.

2. Interpretation of the coefficients — polyno-
mial terms complicate the direct interpretation of
the coefficients, so it is important to analyze their
combined effect on the predicted failure rate.
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(12)

3. Model validation — requires rigorous test-
ing of the model against independent data to as-
sess its predictive ability under real-world operat-
ing conditions.

4. Consideration of operational factors — the
model should adapt to different equipment operat-
ing modes and aircraft operating conditions.

The application of the described methodology
allows to create a flexible tool for predicting the
reliability of onboard equipment, which in turn
also contributes to the optimization of mainte-
nance processes and improvement of flight safety.

The process of optimization of maintenance
planning is based on the following criteria:

1. Minimization of total aircraft downtime.

2. Minimization of the intervals between
maintenance forms.

3. Minimization of total maintenance costs.

4. Ensuring the required level of component
reliability.

These criteria are taken into account in the
objective function of the optimization procedure
with appropriate weighting coefficients.

Data preparation

The data preparation process is a key step in
the study to ensure the validity and correctness
of the subsequent analysis. The methodology in-
volves several steps of transforming raw statisti-
cal data on maintenance into a structured data set
suitable for Poisson distribution regression analy-
sis and predictive modeling.

1. Data Collection — complete maintenance logs
and records of failure events for the annual period
of operation of various aircraft components, from
critical systems to support equipment are collected.

2. Data cleaning — a comprehensive processing
of the original data set is carried out, including:

—identifying and eliminating outliers using
statistical z-score analysis;

— processing missing values by interpolation
methods based on nearby data points;

— correction of input errors and standardizing
of component classification.
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3. Data Transformation — continuous time-to-
failure data is converted into discrete failure count
intervals to prepare for Poisson regression.

4. Data Normalization — minimax normaliza-
tion is carried out with respect to time-to-failure
indicators to ensure comparability of data across
different components, regardless of their usage.

5. Categorization — classification of compo-
nents according to their criticality for aircraft op-
eration, taking into account their functional role
and the impact of failures on flight safety.

6. Generating the final dataset — the dataset
prepared for the software is structured to reflect
the failure cases of each component based on op-
erating hours and operating conditions.

The result of this process is a comprehensive
dataset that provides a robust basis for subsequent
regression analysis of the Poisson distribution and
predictive maintenance modeling. A sample data-

Vol. 28, No. 02, 2025

set with different components is presented in Ta-
ble 1.

Table 1 presents mean time between failures
of the aircraft, number of failures, operating con-
ditions and maintenance activities taken for the
different component types during 2020, they pro-
vide a reliable basis for the presented analysis.

Preparation of data for modeling also
includes:

1. Data cleaning to ensure the integrity and
reliability of the dataset, including:

a) deviation detection and elimination, in
which, using the inter-quartile range (IQR) meth-
od, deviations were identified and excluded from
further analysis: mean time between failures and
the number of failures that were 1.5 times greater
the IQR from the quartiles;

Table 1
Dataset sample with diverse components
Component MTBF Nulflber of Oper.a.ting Main.te.n.ance .Da'te of
failures conditions activities incident
Comp_A 3034.80 1 Extreme Repair 2020-08-14
Comp B 4369.73 3 Normal Inspection 2020-04-08
Comp B 710.00 3 Severe Inspection 2020-07-19
Comp B 2527.25 5 Normal Repair 2020-12-25
Comp C 907.73 2 Severe Repair 2020-02-02
Comp C 603.78 1 Extreme Repair 2020-02-10
Comp_C 4924.54 3 Severe Repair 2020-08-03
Comp C 1547.47 4 Severe Repair 2020-09-24
Comp C 4881.90 3 Severe Repair 2020-11-23
Comp D 2221.08 0 Extreme Repair 2020-03-02
Comp D 2234.37 3 Normal Inspection 2020-04-10
Comp D 3561.38 1 Severe Inspection 2020-06-20
Comp D 559.69 5 Normal Inspection 2020-08-01
Comp_D 3252.44 1 Severe Replacement 2020-09-17
Comp E 2861.49 3 Severe Repair 2020-01-28
Comp E 4739.91 5 Severe Inspection 2020-02-04
Comp E 3282.74 5 Extreme Inspection 2020-02-17
Comp E 2299.37 3 Severe Repair 2020-05-14
Comp E 531.80 4 Normal Repair 2020-08-18
Comp_E 2600.43 1 Extreme Inspection 2020-10-19

40



Tom 28, N2 02, 2025

HayuHbin BecTHuk MITY TA

Vol. 28, No. 02, 2025

b) calculation of missing values, in which a
linear interpolation method was used to provide a
complete data set for analysis.

2. Data transformation for their adaptation
and regression of the Poisson distribution, for
which the following transformations were im-
plemented:

a) The distribution of mean time between fail-
ures, with continuous mean time between failures
distributed among cells to facilitate modeling of
the number of failures within these intervals;

b) number of failures — was directly used as
a response parameter in the Poisson distribution
regression model, which met the requirements for
its formation.

3. The data was normalized in the Python
programming language using the Scipy library.
The code is as follows

def min_max_normalize(data): return (data —
data.min()) / (data.max() — data.min())

normalized data =min max_normalize(data).

This allowed the mean time between failures
to be between 0 and 1, which allowed for a stan-
dardized scale for the different components.

4. Categorization of components by classifi-
cation based on their criticality to aircraft opera-
tion, in particular:

a) critical components — engines and avionics
that directly affect the safety and operational ca-
pabilities of the aircraft [14];

b) non-critical components — interior lighting
and passenger entertainment systems whose fail-
ures have an insignificant impact on overall safety.

5. The final dataset was carefully assembled
to ensure that all pre-processing steps were accu-
rately reflected. This dataset formed the basis for
a Poisson regression analysis and subsequent pre-
dictive maintenance modeling to provide insight
into the failure patterns and maintenance needs of
aircraft onboard equipment.

6. Application of Poisson distribution regres-
sion analysis to model aircraft component failure
rates. The choice of Poisson distribution regres-
sion is due to its adequacy for analyzing count
data typical for reliability studies.

The model is expressed as

10g<7\’i):B0 +Blei+“'+Bani’ (14)
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where A, is the expected failure rate of the compo-
nenti, 3, B,, ... B, coefficients reflecting the influ-
ence of the variables X, ..., X on the failure rate.

Stages of regression analysis:

1. Variable selection:

—the dependent variable is the number of
failures;

— independent variables are operating hours,
operating conditions, maintenance activities;

2. Data Coding:

— operating conditions — “Normal” = 0, “Se-
vere” = 1, ‘Extreme” = 2;

— maintenance activities — “Inspection” = 0,
“Repair” = 1, “Replacement” = 2.

3. The model is log () = B, + B, x Operating
time + B, x Operating condition + B, x Mainte-
nance measures,

4. To estimate the model parameters, the max-
imum likelithood method is applied to estimate the
coefficients p.

5. When interpreting the results, it is import-
ant to take into account that the analysis of  co-
efficients allows to evaluate the influence of each
factor on the failure rate. A positive coefficient
indicates an increase in the failure rate with the
growth of the corresponding parameter.

The presented approach also provides a re-
liable basis for predicting the failure rate of on-
board equipment and optimizing maintenance
strategies.

Algorithm for optimization of maintenance
planning

The main goal of optimization is to mini-
mize equipment downtime and maintenance costs
while ensuring the required level of reliability and
flight safety [15].

Optimization Criteria:

1. The objective function is_qualitatively a
combination of expected downtime due to failures
and preventive maintenance costs:

— downtime cost (the product of the average
downtime per failure event and the associated cost
per hour of downtime);

— maintenance costs (the cost of each type
of maintenance activities (inspection, repair, re-
placement)).
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2. Restrictions:

— frequency of maintenance (established in-
tervals (forms) of maintenance, taking into ac-
count technological schedules and availability of
required resources);

—resource constraints (limits on the number
of maintenance activities in a given period);

—regulatory requirements (compliance with
safety and regulatory standards).

3. The genetic variant of the algorithm is cho-
sen because it efficiently handles nonlinear prob-
lems containing many constraints.

The genetic algorithm generates and evalu-
ates different variants of maintenance plans, iter-
atively improving their performance with respect
to downtime and actual costs.

4. Analysis of the optimized maintenance pro-
cess schedule involving evaluation of the result-
ing plan according to the criteria:

— efficiency (reduction of expected downtime
and maintenance costs);

— feasibility (compliance with operational
and regulatory requirements);

—improvement potential (identification of
components or periods for further optimization).

In practice, based on a synthetic dataset, the
optimization algorithm takes into account the
failure rate of each component and maintenance
statistics, for example, more frequent preventive
maintenance may be recommended for compo-
nents with high failure rates in harsh operating
conditions.

The result of optimization is a maintenance
plan that balances equipment reliability, operat-
ing costs and compliance with regulatory safety
requirements.

The algorithm can show that product Comp C
that exhibits a high failure rate in harsh conditions
significantly benefits from preventive replace-
ment every 1000 hours of operation, reducing the
total downtime by 20% compared to the existing
schedule.

This detailed approach allows to determine
how a genetic algorithm can be used to develop an
optimal maintenance plan, significantly improv-
ing the efficiency of maintenance processes and
equipment reliability based on comprehensive
synthetic data analysis.
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Model Adequacy Testing

To evaluate the effectiveness of the model, its
predictions are compared with actual equipment
failure data, using two main metrics:

—Root Mean Square Error (RMSE) — mea-
sures the accuracy of the predictions;

— Pearson Correlation Coefficient — measures
the strength of the relationship between predicted
and actual values. The following are provided:

Step 1. Cross-Validation Setup.

Cross-validation is used to evaluate the pre-
dictive performance of the model, where the
dataset is divided into a training set (80%) used
to develop the model and a test set (20%) used
to evaluate its predictions. This division ensures
that the model is tested on the data by simulating
real-world forecasting scenarios.

Step 2. Model Performance Metrics.

Several metrics are used to quantify the accu-
racy and reliability of the model. These include:

1. Root Mean Square Error (RMSE), to mea-
sure the root mean square of prediction errors,
providing an indication of the accuracy of the
model by a formula of the following form

sl

noo
where y. is the current failure value, y, is the pre-
dicted failure rate, and » is the number of observa-
tions on the test set.

2. Pearson correlation coefficient (r), which
estimates the linear correlation between the actual
and predicted failures rate using the formula of
the following form

)

27_1(%’ _)_’)(JA’:' -
SRR S ]

where y and )A/ are the mean values of current
and predicted failures, respectively.
Step 3. Applying the model to the test set.
The parameters of the Poisson distribution re-
gression model are estimated on the training data-
set, after which the model is applied to the test set

~

RMSE = y,

(15)
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to predict the number of failures. These predic-
tions are then used to evaluate the performance
of the model using the metrics defined above
(Step 2).

Step 4. Evaluation of the optimization algo-
rithm.

The effectiveness of the optimization algo-
rithm is evaluated by implementing the optimized
maintenance plan on a test plant and observing the
resulting changes in failure rate and maintenance
costs.

The optimized maintenance plan is compared
to the actual plan used during the test period, as-
sessing differences in performance and cost effec-
tiveness.

Step 5. Statistical analysis to validate model
predictions, including:

1. Significance testing using statistical tests
such as the chi-squared test, which are used to de-
termine whether differences between actual and
predicted failure rates are statistically significant.

2. Calculating confidence intervals for Pear-
son correlation coefficients and root mean square
error to quantify the uncertainty of model perfor-
mance metrics.

Step 6. Validation.

The reliability of the results is assessed by
analyzing the numerical performance metrics
of the model. The main criteria include the root
mean square error of prediction (RMSE), the
Pearson correlation coefficient between actual
and predicted values, as well as an assessment of
the economic efficiency of the optimized main-
tenance plan.

Comparing model predictions with actual
data allows to determine:

— accuracy of prediction failures of the avia-
tion equipment product;

— effectiveness of the proposed maintenance
strategy;

— the potential for further improvement of the
model.

Regular updating of the model based on new
operational data will ensure that its predictive
ability is maintained with the required level of ac-
curacy.

The results of the analysis are of key impor-
tance for improving the methodology of predict-
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ing the technical condition of aviation equipment
products.

The application of the developed Poisson
distribution regression models with polynomial
features contributes to improving the accuracy of
failure prediction, optimizing maintenance inter-
vals and minimizing the risks of random failures
of critical systems. This study makes a significant
contribution to the development of the predictive
maintenance concept in the aviation industry,
which ultimately leads to improved flight safety
and aircraft operational efficiency.

One of the key areas of applications of pre-
dictive models is the optimization of maintenance
schedules. Accurate failure rate predictions help to
determine the optimal timing of maintenance ac-
tivities, ensuring that components are serviced be-
fore they fail. This proactive approach minimizes
unexpected downtime and improves the efficien-
cy of aircraft maintenance processes. By planning
maintenance based on actual data rather than fixed
intervals, airlines can reduce unnecessary mainte-
nance costs and improve the overall reliability of
their fleet.

The developed models facilitate decision
making based on up-to-date operational data. This
will allow maintenance planners to optimally al-
locate resources by focusing on critical compo-
nents with a high probability of failure in the near
future. This approach will improve maintenance
efficiency and ensure timely maintenance of criti-
cal aircraft systems.

The article emphasizes the importance of
model validating by comparing its predictions
with actual maintenance statistics data. This
verification process ensures the reliability and
accuracy of the model predictions. Regularly
updating the model using new operational data
allows for continuous improvement of its pre-
dictive capabilities, leading to a constant im-
provement in the quality of maintenance plan-
ning and execution.

Thus, the results of the Poisson distribution
regression and polynomial analysis provide
useful information to help to plan maintenance,
optimize resource allocation, reduce costs and
improve the overall reliability and safety of air-
craft operation. These models help to avoid the
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occurrence of unexpected events through a pro-
active maintenance strategy, ensuring that avia-
tion products are maintained at the highest level
of technical condition.

The dependencies presented in Figures 1-4
show the expected number of failures at a given
operating time of products in the process of tech-
nical operation. The results are obtained by ap-
plying various methods of predicting the technical
condition of products under expected operating
conditions. Using each method, the mean square
errors and Pearson correlation coefficients were
estimated for the data set from Table 1.

Figure 1 shows a weak positive correlation
between operating time and failure rate. The ba-
sic Poisson regression model shows a significant
spread of predicted values relative to actual data,
which is reflected in a high error (RMSE: 1.446)
and low correlation (0.162).

Figure 2 shows the improvement in prediction
accuracy due to the inclusion of nonlinear depen-
dencies. The addition of polynomial features al-
lowed the model to more accurately track chang-

Vol. 28, No. 02, 2025

es in the number of failures at different operating
hours, as evidenced by a decrease in RMSE to
1.146 and an increase in correlation to 0.240.

Figure 3 shows a complete coincidence of
the predicted values with the actual data. The sin-
gle-coded least squares method demonstrates un-
realistically accurate prediction of the expected
number of failures at any operating time (RMSE:
5.03e-14, correlation: 1.0), which indicates the
need to change the data set for machine training
of the model.

Figure 4 shows the results after removing
the non-numerical parameters from the model.
The dependence between operating time and
number of failures becomes more realistic, with
a moderate spread of predicted values (RMSE:
1.391, correlation: —0.319), which more fully
corresponds to the real processes of technical
operation.

Table 2 presents the results of the evalu-
ation of the effectiveness of the proposed re-
search methods. For approbation of the research
results, the detailed mathematical formulation

Dependence of the number of failures on operating time
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Fig. 1. Dependence of the number of failures on operating time using Poisson distribution regression.
RMSE: 1.446000013304307; Pearson Correlation Coefficient: 0.1624522626478234
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Fig. 2. Failures prediction using polynomial features in the Poisson distribution regression model.
RMSE: 1.1465954900923936; Pearson Correlation Coefficient: 0.240611370124739
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RMSE: 5.034734662940756¢-14; Pearson Correlation Coefficient: 1.0
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Dependence of the number of failures on operating time
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Fig. 4. The results of predicting failures using the least squares method after removing non-numeric parameters.
RMSE: 1.3905425046960287; Pearson Correlation Coefficient: —0.3194427708423738

Research methodology effectiveness

Table 2

Code file Methodology Model used RMSE Pearson cm:relatlon
coefficient
danyaplus2.py | Poisson distribution Generalized | 1.446000013304307 0.16245226264782342
regression (fig. 1) linear model
danyaplus3.py | Polynomial signs (fig. 2) | Poisson 1.1465954900923936 0.240611370124739
distribution
regression
danyaplus4.py | Single coding (fig. 3) Least squares | 5.034734662940756e-14 | 1.0
regression
danyaplusS.py | Single coding with Least squares | 1.3905425046960287 —0.3194427708423738
removal of non-numeric | regression
columns (fig. 4)

of the proposed methods in the form of program

codes has been placed in cloud storage.!

I Detailed mathematical formulation of the proposed meth-
ods in the form of Python program codes. Yandex disk.
https://disk.yandex.ru/d/11UjY12SX4nmug

Available at:

(accessed: 02.04.2025). (in Russian)

Comparative analysis of the results shows
that the Poisson distribution regression method
with polynomial features (danyaplus3.py, fig. 2)

demonstrates the best balance between accura-
cy (RMSE = 1.146) and generalization ability
(correlation coefficient = 0.240). The single-cod-

ed least squares method (danyaplus4.py, fig. 3)
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shows suspiciously perfect results, which may in-
dicate model overfitting.

Abnormally high results for the least squares
method with single coding (RMSE = 5.03e-14,
correlation coefficient = 1.0) indicate probable
overfitting of the model. This may be due to the
fact that the model has adjusted too accurately to
the features of the synthetic data, losing its gen-
eralization ability. In real conditions, such results
are unlikely and require additional verification on
an array of independent data.

Conclusion

1. Quantitative analysis of the performance of
the prediction methodologies showed significant
differences in the accuracy of the models. The ba-
sic regression of Poisson distribution demonstrated
RMSE = 1.446 and Pearson correlation coefficient
equal to 0.162. The introduction of polynomial
signs led to improvement of indicators: RMSE de-
creased to 1.146, correlation coefficient increased
to 0.240, which confirms the effectiveness of poly-
nomial signs application for modeling of nonlinear
dependencies in the processes of technical opera-
tion of an aviation product.

2. The single-coded least-squares regression
method showed statistically abnormal results
(RMSE = 5.03e-14, correlation coefficient = 1.0),
indicating the overfitting of the model on synthet-
ic data. This effect requires the implementation
of regularization and cross-validation methods to
improve the generalizing ability of the model.

3. Application of the Poisson distribution re-
gression model with polynomial signs of the sec-
ond degree provides an optimal balance between
the complexity of the model and its ability to
reflect nonlinear interactions in the processes of
technical operation of the aviation product, which
is confirmed by the improvement of prediction ac-
curacy indicators.

4. The main limitation of this study is the use
of synthetic data, which does not fully reflect the
complexity and variability of real aircraft mainte-
nance processes. In particular, synthetic data do
not take into account all possible anomalies and
rare cases of failures, which may lead to distortion
of modeling results.
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5. The results of the study confirm the ef-
fectiveness of using Poisson distribution regres-
sion with polynomial signs for predicting fail-
ures of aviation product. At the same time, the
revealed limitations of synthetic data indicate
the necessity of model validation on real oper-
ational data.

6. The practical significance of the developed
models lies in the possibility of their integration
into the aircraft maintenance program to predict
failures of aviation product and optimize main-
tenance and repair works, which potentially con-
tributes to the reduction of operating costs and
improvement of flight safety.

7. To overcome the identified limitations, it is
further necessary to:

— Conduct model validation on real opera-
tional data;

— Implement regularization methods to pre-
vent overfitting;

— Develop mechanisms for model adaptation
to different aviation product types and operating
conditions;

— Explore the possibilities of integrating addi-
tional factors into the model to improve prediction
accuracy.
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