УДК 517.988.8:536.48

О НЕКОТОРЫХ ПРИБЛИЖЕНИЯХ К ЗАМКНУТОМУ МНОЖЕСТВУ НЕТРИВИАЛЬНЫХ РЕШЕНИЙ УРАВНЕНИЙ ГИНЗБУРГА – ЛАНДАУ

А.А. ФОНАРЁВ

Статья представлена доктором технических наук, профессором Кузнецовым В.Л.

Исследуется возможность использования проекционного итерационного метода, сочетающего в себе проекционный метод и итерационный процесс, для отыскания приближений к замкнутому множеству нетривиальных обобщённых решений краевой задачи для уравнений Гинзбурга – Ландау феноменологической теории сверхпроводимости. Обобщённые решения краевой задачи для уравнений Гинзбурга – Ландау являются критическими точками функционала свободной энергии сверхпроводника.

Ключевые слова: проекционный итерационный метод, уравнения Гинзбурга – Ландау, решения.

Введение

В феноменологической теории сверхпроводимости изучается поведение сверхпроводимости во внешнем магнитном поле. Состояние сверхпроводника, занимающего объём $\overline{\Omega} \subset R^3$ (Ω – ограниченная выпуклая область в трёхмерном евклидовом пространстве R^3 с границей $\partial\Omega$, $\overline{\Omega} = \Omega \cup \partial\Omega$), описывают решения уравнений Гинзбурга – Ландау феноменологической теории сверхпроводимости, имеющих тривиальное (нулевое) решение.

В [1] исследуется более общая краевая задача для уравнений Гинзбурга — Ландау, чем исследуемая в [2] соответствующая абрикосовскому смешанному состоянию краевая задача, и определяется обобщённое решение краевой задачи для уравнений Гинзбурга — Ландау феноменологической теории сверхпроводимости, являющееся критической точкой функционала сверхпроводника.

С использованием уравнений Гинзбурга – Ландау и граничных условий, определяющих их решения, в [1, с. 345–350] доказывается существование нетривиального обобщённого решения краевой задачи для уравнений Гинзбурга – Ландау.

Точная аналитическая запись решения краевой задачи для уравнений Гинзбурга — Ландау оказывается невозможной в силу существенной нелинейности уравнений Гинзбурга — Ландау. Поэтому для поиска решений краевой задачи для уравнений Гинзбурга — Ландау применимы только численные методы.

В численных методах для поиска решений краевой задачи для уравнений Гинзбурга – Ландау важное место занимают частные конкретные задачи для уравнений Гинзбурга – Ландау [3; 4]. Например, в [4] численными методами изучено влияние граничных условий на решения уравнений Гинзбурга – Ландау для тонких сверхпроводящих пластин в безвихревом пределе.

В статье, следуя [1], при построении численного метода для поиска решений краевой задачи для уравнений Гинзбурга – Ландау рассматривается общая краевая задача для уравнений Гинзбурга – Ландау.

Показывается, что приближения к замкнутому множеству нетривиальных обобщённых решений краевой задачи для уравнений Гинзбурга — Ландау можно получить с использованием проекционного итерационного метода (ПИМ), сочетающего в себе проекционный метод и итерационный процесс [5, с. 141], где это утверждается без строгого обоснования). При этом существенно используется исследование функционала свободной энергии сверхпроводника, приведённое в [1].

1. Функционал свободной энергии сверхпроводника

Пусть (\cdot,\cdot) – скалярное произведение в R^3 ; ∇ – оператор градиента в R^3 :

$$\nabla = (\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3);$$

rot — оператор ротора: $rot = \left(\partial/\partial x_2 - \partial/\partial x_3, \partial/\partial x_3 - \partial/\partial x_1, \partial/\partial x_1 - \partial/\partial x_2 \right); n$ — вектор нормали к $\partial \Omega$; $W_2^1(\Omega)$ — вещественное пространство С.Л. Соболева со скалярным произведением

$$\langle u, v \rangle_{W_2^1(\Omega)} = \int_{\Omega} \{uv + (\nabla u, \nabla v)\} dx$$

и нормой

$$||u||_{W_{2}^{1}(\Omega)} = \left(\left\langle u, u \right\rangle_{W_{2}^{1}(\Omega)}\right)^{1/2}$$

для $u,v\in W_2^1(\Omega)$; E_1 — рассматриваемое над полем действительных чисел гильбертово пространство комплексных функций, вещественные и мнимые части которых являются элементами пространства $W_2^1(\Omega)$. Скалярное произведение на E_1 определяется равенством

$$\langle \psi, \varphi \rangle_{E_1} = \text{Re} \int_{\Omega} \{ \psi(x) \varphi^*(x) + (\nabla \psi(x), \nabla \varphi^*(x)) \} dx$$

для $\psi, \phi \in E_1$. Здесь и далее (*) — операция комплексного сопряжения.

Обозначим через E_2 гильбертово пространство вектор-функций $A = (A_1, A_2, A_3)$, компоненты которых принадлежат пространству $W_2^1(\Omega)$. Скалярное произведение вектор-функций $A = (A_1, A_2, A_3)$, $B = (B_1, B_2, B_3)$ на E_2 определим равенством

$$\langle A, B \rangle_{E_1} = \int_{\Omega} \left\{ \sum_{i=1}^3 A_i B_i + \sum_{i,k=1}^3 \frac{\partial A_k}{\partial x_i} \frac{\partial B_k}{\partial x_i} \right\} dx.$$

Рассмотрим гильбертово пространство $E=E_1\times E_2$, состоящее из пар (ψ,A) с $\psi\in E_1$ и $A\in E_2$. Скалярное произведение элементов (ψ,A) , $(\varphi,B)\in E$ определим равенством

$$\langle u, v \rangle_E = \langle \psi, \varphi \rangle_{E_1} + \langle A, B \rangle_{E_2}$$

При соответствующем выборе единиц измерения уравнения Гинзбурга — Ландау феноменологической теории сверхпроводимости и граничные условия, определяющие их решения $(\psi, A) \in E$, имеют вид:

$$(i\nabla - A)^2 \psi + \mu |\psi|^2 - \lambda \psi = 0; \qquad (1)$$

$$-rot \, rot A = A \left| \psi \right|^2 + i \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right); \tag{2}$$

$$\left(n, -i\nabla \psi - A\psi\right)\Big|_{\partial\Omega} = 0; \tag{3}$$

$$rot A \times n \Big|_{\partial \Omega} = 0 , \qquad (4)$$

где λ и μ – вещественные параметры; $i = \sqrt{-1}$.

Уравнения Гинзбурга — Ландау являются уравнениями Эйлера функционала f свободной энергии сверхпроводника, который определяется на парах $u = (\psi, A) \in E$ равенством

128 А.А. Фонарёв

$$f(u) = \frac{1}{2} \int_{\Omega} \left\{ \left| rot A \right|^2 + \left| \nabla \psi - i A \psi \right|^2 + \frac{\mu}{2} \left| \psi \right|^4 - \lambda \left| \psi \right|^2 \right\} dx.$$
 (5)

Функционал f непрерывно дифференцируем по Фреше на E и

$$\langle \nabla f(u), v \rangle_{E} = \int_{\Omega} \left\{ (rot A, rot B) + \left(A |\psi|^{2} + i\psi^{*} \nabla \psi - i\psi \nabla \psi^{*}, B \right) \right\} dx +$$

$$+ \operatorname{Re} \int_{\Omega} \left\{ \left(\nabla \psi - iA\psi, \nabla \varphi^{*} + iA\varphi^{*} \right) + \left(\mu |\psi|^{2} \psi - \lambda \psi \right) \varphi^{*} \right\} dx$$

$$(6)$$

для $u = (\psi, A)$, $v = (\phi, B) \in E$, где ∇f – градиент (производная Фреше) функционала f.

Критические точки функционала f на E являются решениями операторных уравнений

$$P\nabla f(u) = 0, \quad Q\nabla f(u) = 0 \quad (u \in E), \tag{7}$$

где $P: E \to E_1$, $Q: E \to E_2$ — операторы ортогонального проектирования пространства E на E_1 и E_2 соответственно.

Операторные уравнения (7) называются в [1] уравнениями Гинзбурга — Ландау, а их решения — обобщёнными решениями краевой задачи (1)—(4). Если обобщённое решение $u = (\psi, A)$ достаточно гладкое, то пара (ψ, A) является классическим решением краевой задачи (1)—(4) для уравнений Гинзбурга — Ландау.

Обозначим через F подпространство пространства E_2 , состоящее из вектор-функций $A = (A_1, A_2, A_3)$, удовлетворяющих условиям:

$$div A = \frac{\partial A_1}{\partial x_1} + \frac{\partial A_2}{\partial x_2} + \frac{\partial A_3}{\partial x_3} = 0 ; (A, n)|_{\partial \Omega} = 0.$$

Пусть H — прямое произведение пространств E_1 и F . Пространство H является замкнутым подпространством пространства E . На пространстве H [1] норма $\|\cdot\|_F$ эквивалентна норме

$$\|u\|_{H} = (\|\psi\|_{E_{1}}^{2} + \|rotA\|_{L_{2}(\Omega)}^{2})^{1/2} \quad (u = (\psi, A) \in H),$$

где

$$\|rot A\|_{L_2(\Omega)}^2 = \int_{\Omega} (rot A, rot A) dx$$
.

На пространстве H функционал (5) допускает представление

$$f(u) = \frac{1}{2} ||u||_{H}^{2} + g(u).$$

В [1] отмечается, что: 1) из равенства (6) вытекает, что функционал g дифференцируем по Фреше на H , а его градиент $\nabla g: H \to H$ вполне непрерывен; 2) градиент ∇f функционала f на H удовлетворяет условию $\left(S\right)_+$, т.е. из слабой сходимости последовательности $\left\{u_n\right\}_{n=1}^\infty \subset H$ к $u_0 \in H$ и

$$\limsup_{n\to\infty} \left\langle \nabla f\left(u_n\right), u_n - u_0 \right\rangle_{H} \le 0$$

(lim sup – верхний предел) вытекает, что

$$\lim_{n\to\infty} \|u_n - u_0\|_H = 0.$$

В [1, с. 349] доказано, что если $u = (\varphi, A)$ – критическая точка функционала f, рассматриваемого на H, то u – критическая точка этого функционала на E. Таким образом, задача об отыскании критических точек функционала f на E сводится к отысканию критических точек на более узком пространстве H точек.

И в [1] доказано, что функционал $f: H \to R^1$ растущий, т.е. $\lim_{\|u\|_u \to \infty} f(u) = +\infty$.

При $\lambda > 0$ на вектор-функциях $(\psi, 0)$, где ψ – малая ненулевая постоянная, функционал f принимает отрицательные значения, а f(0) = 0.

Пусть $L_q(\Omega)$, q > 1, – пространство Лебега с нормой

$$\|u\|_{L_q(\Omega)} = \left(\int_{\Omega} |u(x)|^q dx\right)^{1/q} \quad (u \in L_q(\Omega)).$$

Пространство С.Л. Соболева $W_2^1(\Omega)$ вложено в пространство Лебега $L_q(\Omega)$ с $q \leq 6$, т.е. $W_2^1(\Omega) \subset L_q(\Omega)$ и оператор вложения $j:W_2^1(\Omega) \to L_q(\Omega)$, j(u)=u $\left(u \in W_2^1(\Omega)\right)$, является непрерывным взаимно-однозначным отображением $W_2^1(\Omega)$ в $L_q(\Omega)$. При q < 6 пространство $W_2^1(\Omega)$ вложено в $L_q(\Omega)$ компактно, т.е. оператор j компактный.

Говоря о компактности оператора, имеем в виду преобразование оператором любого ограниченного множества в компактное множество, т.е. в такое множество, что из любой последовательности, содержащейся в множестве, можно выделить фундаментальную подпоследовательность [6]. И говоря далее о компактности последовательности, будем иметь в виду, что из любой подпоследовательности последовательности можно выделить фундаментальную подпоследовательность.

Покажем, что градиент ∇g функционала g равномерно непрерывен на ограниченных множествах пространства H. При доказательстве равномерной непрерывности оператора ∇g на ограниченных множествах пространства H ограничимся исследованием только члена

$$i\psi^*\nabla\psi - i\psi\nabla\psi^* = 2\{(\operatorname{Im}\psi)\nabla\operatorname{Re}\psi - (\operatorname{Re}\psi)\nabla\operatorname{Im}\psi\}$$

в первом интеграле в равенстве (6).

Если $\psi = v + i\omega$, то

$$\left(i\psi^*\nabla\psi - i\psi\nabla\psi^*, B\right) = 2\sum_{k=1}^3 \left(\omega v_{x_k} - v\omega_{x_k}\right) B_k. \tag{8}$$

Рассматривая слагаемое $v\omega_{x_1}B_1$ в сумме в (8) (остальные слагаемые в сумме в (8) рассматриваются аналогично), при $u=(\psi,A)$, $\tilde{u}=(\tilde{\psi},\tilde{A})$, $v=(\varphi,B)\in H$, $\psi=v+i\omega$, $\tilde{\psi}=\tilde{v}+i\tilde{\omega}$ имеем:

$$\begin{split} &\left|\int_{\Omega} \left(v\omega_{x_{1}}-\tilde{v}\tilde{\omega}_{x_{1}}\right)B_{1} dx\right| \leq \int_{\Omega} \left|\left(v-\tilde{v}\right)v_{x_{1}}B_{1}\right| dx + \int_{\Omega} \left|\tilde{v}\left(\omega_{x_{1}}-\tilde{\omega}_{x_{1}}\right)v_{x_{1}}B_{1}\right| dx;\\ &\int_{\Omega} \left|\left(v-\tilde{v}\right)v_{x_{1}}B_{1}\right| dx \leq \left\|v-\tilde{v}\right\|_{L_{6}(\Omega)} \left\|v_{x_{1}}B_{1}\right\|_{L_{6}(\Omega)} \leq C \left\|v-\tilde{v}\right\|_{w_{2}^{1}(\Omega)} \left\|v_{x_{1}}\right\|_{L_{2}(\Omega)} \left\|B_{1}\right\|_{L_{3}(\Omega)};\\ &\int_{\Omega} \left|\tilde{v}\left(\omega_{x_{1}}-\tilde{\omega}_{x_{1}}\right)B_{1}\right| dx \leq \left\|\omega_{x_{1}}-\tilde{\omega}_{x_{1}}\right\|_{L_{2}(\Omega)} \left\|\tilde{v}B_{1}\right\|_{L_{2}(\Omega)} \leq \left\|\omega-\tilde{\omega}\right\|_{w_{2}^{1}(\Omega)} \left\|\tilde{v}\right\|_{L_{4}(\Omega)} \left\|B_{1}\right\|_{L_{4}(\Omega)}, \end{split}$$

где C – норма оператора вложения j из $W_2^1(\Omega)$ в $L_6(\Omega)$.

Следовательно, оператор $T: H \to H$, определяемый равенством

$$\langle T(u), v \rangle_H = \int_{\Omega} (i\psi^* \nabla \psi - i\psi \nabla \psi^*, B) dx$$

130 А.А. Фонарёв

для $u = (\psi, A)$, $v = (\phi, B) \in H$, является равномерно непрерывным на ограниченных множествах пространства H.

Из компактности и равномерной непрерывности на ограниченных множествах оператора $\nabla g: H \to H$ вытекает, что оператор ∇g усиленно непрерывный (теорема 7.2 в [7, с. 86]), т.е. из слабой сходимости последовательности $\{u_n\}_{n=1}^{\infty} \subset H$ к $u_0 \in H$ следует, что

$$\lim_{n\to\infty} \left\| \nabla g\left(u_{n}\right) - \nabla g\left(u_{0}\right) \right\|_{H} = 0.$$

Отметим, что в [5] усиленная непрерывность оператора ∇g не обосновывается.

На самом деле, при построении ПИМ для отыскания приближений к нетривиальным решениям уравнений Гинзбурга — Ландау усиленную непрерывность оператора ∇g можно не использовать при использовании равномерной непрерывности на ограниченных множествах оператора $\nabla f: H \to H$, вытекающей из равномерной непрерывности на ограниченных множествах оператора $\nabla g: H \to H$.

Таким образом, обоснована возможность отыскания критических точек функционала f в пространстве H с использованием аналога ПИМ части 6.6 в [5], ибо результаты исследования уравнений Гинзбурга — Ландау в [1] и равномерная непрерывность на ограниченных множествах оператора $\nabla f: H \to H$ позволяют использовать аналог ПИМ части 6.6 в [5] для отыскания нетривиальных решений уравнения $\nabla f(u) = 0$ ($u \in H$), являющихся критическими точками функционала f на H.

2. Проекционный итерационный метод

Пусть $\{H_i\}_{i=1}^{\infty}$ и $\{P_i\}_{i=1}^{\infty}$ – такие последовательности подпространств (замкнутых) пространства H и операторов ортогонального проектирования P_i пространства H на H_i $(i \ge 1)$, что выполняются следующие условия:

- 1) $H_i \subseteq H_{i+1}$ для каждого $i \ge 1$;
- 2) $P_i u \rightarrow u$ при $i \rightarrow \infty$ для каждого $u \in H$;
- 3) H_1 состоит из элементов $(\psi, 0) \in H$ с функциями ψ , равными константам.

Зафиксируем произвольные числа

$$q_0 \in \big(0,1\big)\,; \ q \in \big(0,q_0\big)\,; \ b > 0\,; \ \theta \in (0,1]\,.$$

Предположим, что $\lambda > 0$.

Рассмотрим последовательность $\{u_i\}_{i=1}^{\infty}$ ПИМ

$$u_{i+1} = u_i - t_i w_i \quad (i \ge 1) \tag{9}$$

с таким начальным элементом $u_1 \in H_1$, что $f(u_1) < 0$, где при

$$h_i \equiv P_{i+1} \nabla f\left(u_i\right) \neq 0$$

имеем:

$$\begin{aligned} t_{i} &\in \left[\theta\tau_{i}, \tau_{i}\right]; \\ \tau_{i} &= \sup_{\tau \in (0,b]} \left\{ \left\langle P_{i+1} \nabla f\left(u_{i} - sw_{i}\right), w_{i} \right\rangle_{H} \geq q \left\|h_{i}\right\|_{H}, \forall s \in \left(0, \tau\right) \right\}; \\ w_{i} &\in H_{i+1}, \ \left\langle h_{i}, w_{i} \right\rangle_{H} \geq q_{0} \left\|h_{i}\right\|_{H}, \end{aligned}$$

а при $h_i = 0$ имеем $t_i = 0$, $w_i = 0$.

В силу выбора элементов w_i и множителей t_i ($i \ge 1$) в (9) ПИМ (9) является градиентным методом (методом типа метода наискорейшего спуска). И ПИМ (9) сочетает в себе проекционный метод и итерационный процесс, ибо элементы последовательности $\{u_i\}_{i=1}^{\infty}$ ПИМ (9) принадлежат подпространствам пространства H.

Справедливы следующие лемма и теорема, являющиеся аналогами леммы 6.7 и теоремы 6.12 в [5] и доказываемые так же, как лемма 6.7 и теорема 6.12 в [5].

Лемма. Для последовательности $\{u_i\}_{i=1}^{\infty}$ ПИМ (9) имеем:

- 1) $f(u_i) \ge f(u_{i+1})$ для всех $i \ge 1$;
- 2) последовательность $\left\{u_i\right\}_{i=1}^{\infty}$ ограничена в H ;
- 3) ряд $\sum_{i=1}^{\infty} t_i \|h_i\|_H$ сходится;
- 4) $||h_i||_H \to 0$ при $i \to \infty$;
- 5) последовательность $\left\{ \nabla f\left(u_{i}\right)\right\} _{i=1}^{\infty}$ слабо сходится к нулю в H ;
- 6) $\left\langle \nabla f\left(u_{i}\right),u_{i}-u\right\rangle _{H}
 ightarrow0$ при $i
 ightarrow\infty$ для каждого $u\in H$.

Теорема. Последовательность $\{u_i\}_{i=1}^{\infty}$ ПИМ (9) компактна, частичные пределы последовательности $\{u_i\}_{i=1}^{\infty}$ принадлежат множеству $K = \{u \in H : \nabla f(u) = 0, f(u) \le f(u_1)\}$ и $\lim_{i \to \infty} \{\inf_{u \in K} \|u_i - u\|_{H}\} = 0$. (10)

Заключение 1 леммы означает, что последовательность $\{u_i\}_{i=1}^{\infty}$ ПИМ (9) релаксационная [7, с. 155]. Поэтому множители t_i ($i \ge 1$) в (9) можно назвать, следуя терминологии в [7], релаксационными множителями.

В силу (10) последовательность $\{u_i\}_{i=1}^{\infty}$ ПИМ (9) сходится к замкнутому множеству K нетривиальных критических точек функционала f, рассматриваемого на пространстве H. Множество K является замкнутым множеством нетривиальных обобщённых решений краевой задачи (1)–(4) для уравнений Гинзбурга – Ландау.

Заключение

Автором предложен проекционный итерационный метод, сочетающий в себе проекционный метод и итерационный процесс, для отыскания приближений к замкнутому множеству нетривиальных обобщённых решений краевой задачи для уравнений Гинзбурга — Ландау феноменологической теории сверхпроводимости. Обобщённые решения краевой задачи для уравнений Гинзбурга — Ландау являются критическими точками функционала свободной энергии сверхпроводника.

ЛИТЕРАТУРА

- **1. Бобылев Н.А., Емельянов С.В., Коровин С.К.** Геометрические методы в вариационных задачах. М.: Изд-во Магистр, 1998.
- **2.** Одех Ф. Задача о бифуркации в теории сверхпроводимости // Теория ветвления и нелинейные задачи на собственные значения / под ред. Дж. Б. Келлера и С. Антмана. М.: Мир, 1974. С. 63-70.
- **3.** Саунина С.С., Лексин А.Ю., Прохоров А.В. Автоматизация исследования солитонных решений диссипативного уравнения Гинзбурга Ландау с использованием параллельных вычислений // Високопродуктивні обчислення: міжнародна конференція HPC-UA'2012 (Україна, Київ, 8-10 жовтня 2012 року). С. 300-304. [Электронный ресурс]. URL: http://hpc-ua.org/hpc-ua-12/files/proceedings/60.pdf.

А.А. Фонарёв

4. Безотосный П.И., Лыков А.Н., Цветков А.Ю. Численное решение уравнений Гинзбурга — Ландау для сверхпроводящих пластин с использованием различных граничных условий // Научный Вестник СПбГУ ИТМО. - 2008. - № 13 (58). - С. 42-46.

- **5. Фонарёв А.А.** Проекционные итерационные методы решения уравнений и вариационных неравенств с нелинейными операторами теории монотонных операторов: монография. М.: ИНФРА-М, 2014.
 - 6. Треногин В.А. Функциональный анализ. М.: Наука, 1980.
- **7. Вайнберг М.М.** Вариационный метод и метод монотонных операторов в теории нелинейных уравнений. М.: Наука, 1972.

ABOUT SOME APPROXIMATIONS TO THE CLOSED SET OF NOT TRIVIAL SOLUTIONS OF THE EQUATIONS OF GINZBURG – LANDAU

Fonarev A.A.

Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg – Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg – Landau's equations are critical points of a functional of a superconductor free energy.

Key words: projective iterative method, Ginzburg-Landau's equations, solutions.

Сведения об авторе

Фонарёв Анатолий Афанасьевич, 1942 г.р., окончил МГУ им. М.В. Ломоносова (1972), кандидат физико-математических наук, доцент кафедры высшей математики МФТИ, автор 127 научных работ, область научных интересов — нелинейные уравнения в нормированных пространствах, приближенные методы нелинейного функционального анализа, решение нелинейных эллиптических краевых задач.