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Features of vortex trace propagation for aircraft with propellers
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Abstract: The article presents the results of a study of the characteristics of the wake vortex of aircraft with turboprop engines.
Using the example of the An-12 aircraft, it is shown that rotating propellers make a noticeable contribution to the propagation of the
vortex trail behind the aircraft. This is proved by some studies, as well as numerous observations. It also describes a technique for
studying the wake vortex of aircraft with propellers. The method is based on the method of discrete vortices. The relevance of such
studies is due to the growing interest of carrier companies in aircraft with turboprop engines. It has been proven that when
transporting passengers and cargo on such vessels over distances of 700800 km, maintenance and fuel costs are reduced by about
30-40%. Therefore, the fleet of turboprop aircraft, such as An-22, An-70, An-12, as well as Tu-95, 11-38, C-130, etc., has been
preserved so far. New turboprop aircraft are being developed and put into operation: A-400M, 1I-114, 1I-112M. The vortex trail
behind such aircraft also poses a danger to other aircraft flying behind. A feature of the propagation of the wake vortex behind
aircraft with propellers is the interaction of vortices coming off the airframe and vortices from the propellers. As a result, due to the
rotation of all the screws in one direction, symmetry is broken in the propagation of vortices descending from the right and left
halves of the wing. Therefore, it is important to understand how differently the vortices that descend from the airframe of an aircraft
with turboprop engines behave. For the convenience of the study, the method of accounting for the effect of vortices from screws is
integrated into a special calculation and software package, also based on the method of discrete vortices. In it, when calculating the
characteristics of the wake vortex, the flight weight, speed and altitude of the aircraft, its flight configuration, atmospheric
conditions, proximity of the earth, axial velocity in the core of the vortex and some other factors are taken into account. This
complex has passed the necessary testing and state registration. A number of measures were carried out to validate and verify the
developed complex, confirming the operability of the programs included in it and the reliability of the results obtained from it. The
results of the study of the characteristics of the wake vortex behind the Antonov-12 aircraft in the form of vertical velocity spectra
and fields of perturbed velocities at various distances from it are presented. It is shown that propellers noticeably affect the
propagation of the wake vortex behind turboprop aircraft. This circumstance must be taken into account by the crews of aircraft
flying behind such aircraft.
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OCo0eHHOCTH pacnpoCTPaHEeHUs BUXPEBOTO cJjiea
3a BO3AYIIHBIMH CYIaMH ¢ BHHTAMH

1
A.N. Kes1aHHUKOB
! Henmpansnviii aspoeudpoounamuyeckuii uncmumym umenu npog. H.E. Kykosckozo,
2. Kykosckuii, Poccus

AHnHoOTamms: B craThe NpHUBOISTCA pe3ynbTaThl UCCIIENOBAHUS XapaKTEPUCTHK BHXPEBOTO CIENa 3a BO3AYIIHBIMU CyAaMu
¢ TypOOBHHTOBBIMH JiBHTaTesiMHA. Ha mpnumepe camonera AH-12 mokas3aHO, YTO BpAIAONMECs] BUHTHI BHOCST 3aMETHBIN BKJIAM
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B PacIpPOCTPAHEHHUE BUXPEBOTO CJIE/a 33 CAMOJIETOM. JTO JOKAa3bIBAIOT M HEKOTOPbIE UCCIIEAOBAHNS, a TAKKE MHOTOUHCIICHHBIC
HabmosieHus. TakxKe OMUChIBAaeTCS METOIMKA [Tl MCCIIeIOBaHMS BUXPEBOI'O CJI€/a 3 BO3AYIIHBIMU CyJJaMU C BUHTaMU. B ocHOBe
METOMKH JISKUT METOJ| AUCKPETHBIX BUXpeH. AKTyaJbHOCTh TAKUX HCCJIEIOBAaHUM OOYCIIOBIEHA BO3PACTAIOLUIMM HHTEPECOM
KOMITAaHUH-TIEPEBO3YMKOB K BO3YLLIHBIM CyJaM ¢ TypOOBHHTOBBIMH ABUraTelsiMu. JloKa3aHo, UTO IIPH MEPEeBO3Kax MaccaXUpoB U
TPY30B Ha Takux cynax Ha paccrosHusi 700-800 kM 3arparbl 1Mo OOCIY)XMBAaHMIO W Ha TOIUIMBO COKPAIIAIOTCS HPUMEPHO
Ha 3040 %. [ToaToMy /10 cHX 1Op COXpaHeH NapK TypOOBUHTOBBIX CaMOJIETOB, TAKUX Kak AH-22, AH-70, AH-12, a Taroke Ty-95,
Nn-38, C-130 u np. PazpabarbiBatoTcsi ¥ BBOISTCS B SKCIUIyaTallMi0 HOBbIE TypOOBHMHTOBBIE camoneTsl: A-400M, Min-114,
Nn-112M. BuxpeBoil cien 3a TAKUMH CaMOJIETaMU TakXKe NPEJICTABISIET OMACHOCTh ISl APYTHX, JIETALIMX CIEAOM CaMOJIETOB.
Oco0EHHOCTBIO PacIPOCTPAHEHHUSI BUXPEBOT'O CIIEJa 33 CAaMOJIETaMU C BUHTAMU SIBIACTCS B3aMMOJCHCTBIE BUXPEH, CXOISAIINX C
IUTaHEpa caMoJIeTa U BUXPEH OT BUHTOB. B pesynbrare n3-3a BpallleHHs! BCEX BUHTOB B OIHY CTOPOHY HapyIIAETCs] CHMMETpPUS B
pacIpoCTpaHEHUU BUXPEH, CXOISIIMX C IIPAaBOH U JIEBOW IOJIOBUH KpbUia. [109TOMy Ba)KHO IMOHMMATh, HACKOJIBKO [10-PA3HOMY
BEIyT ceOsl BUXPH, CXOJLIIIME C IUIAHEpa caMoJieTa C TypOOBHHTOBBIMU ABUraTelsiMU. [l ynoOcTBa MCCIEA0BaHMS METOAUKA
ydeTa BIMSIHUSA BUXPEH OT BUHTOB HHTETPHPOBAHA B CIICIMATIBHBIN pacdeTHO-TIPOrPAMMHBIN KOMIUIEKC, Oa3upyFOIIHIiCS TaloKe Ha
METOJIe AUCKPETHBIX BUXpel. B Hem mpu pacdere XapakTepuUCTHK BHXPEBOTO CIIE[a YUUTHIBAIOTCS TIOJETHBIA BEC, CKOPOCTh U
BBICOTA T10JI€Ta CaAMOJIETa, €T0 MOJIETHAsE KOH(PUTypalyst, aTMOC(EpHBIE YCIIOBHSL, OJIM30CTh 3EMIIH, OCEBasi CKOPOCTH B SAPE BUXPSI
W HEKOTOpBIE JpyrHe (hakTopbl. DTOT KOMILIEKC MPOIIET HEOOXOIUMYIO arpo0alyio U TOCyIapCTBEHHYIO PErHCTpaliio. bbut
BBINIOJIHEH sl  MEPONPUATHN 10 BamugaMu ¢ BepudUKaimu pa3pabOTaHHOTO KOMIUIEKCA, —IOITBEPIKIAOIIHX
PpaboTOCIIOCOOHOCTh TIPOTPaMM, BXOMSIMX B HEro, M JIOCTOBEPHOCTH IIOJy4YaeMBIX 10 HEMy pe3yJbTaroB. IIpuBopsiTcs
pe3yabTaThl UCCIENOBAHUS XapaKTEPUCTUK BUXPEBOTO ClIeJa 3a caMosIeToM AH-12 B BHJE CHEKTPOB BEPTUKAIBHON CKOPOCTU U
HoJIe BO3MYIIEHHBIX CKOPOCTEH Ha Pa3lIUUHBIX YAAJIEHUSX OT Hero. [loka3zaHo, 4TO BO3MYIIHBIE BUHTBI 3aMETHO BIMSIOT Ha
pacrpocTpaHeHIe BUXPEBOTO cliela 32 TYPOOBUHTOBBIMH CAMOJIETAMH. JTO 0OCTOSTENHCTBO HEOOXOIIIMO YUHTHIBATH SKHITAXKAM
BO3/IYIIHBIX CY/IOB, JCTAIMX CIIEJIOM 32 TAKAMH CaMOJICTaMH.

KnroueBble cjioBa: BO3AYIIHbIE BHHTHL, BHXPEBOW CJIEA, BO3AYIIHOE CyJHO, B3aWMOJCHCTBHE BHXPEH, TypOOBHHTOBBIE
CaMOJIETHI.

st uurupoBanusi: KenanunkoB A.J. OcoOEHHOCTH pacHpoOCTpaHEHHsT BHUXPEBOTO Cliea 3a BO3AYIIHBIMU CyJaMH
¢ BunTamu // Hayunsiit Becrauk MI'TY T'A. 2023. T. 26, Ne 3. C. 103—-113. DOI: 10.26467/2079-0619-2023-26-3-103-113

Introduction rotation influencing the aircraft wake vortex.

Wake vortex following the aircraft loses its

Nowadays the aeronautical communities of ~ symmetry almost at once as the propeller spins
many countries face the current problem of the  one way, which can be seen in (fig. 1).

ever-growing airport capacity provision due to The long-haul propeller aircraft introduction
air traffic increase maintaining the objective air- ~ has required the research of the long-distance
craft flight safety level. Vortex safety provi- wake vortices following them. Wake vortex fol-
sion [1-5] is one of main challenges for imple- lowing such aircraft is also dangerous for other
mentation of such plans. The essence of vortex aircraft behind it. The question of propeller im-
safety issue is wake vortex following the air-  pact on long-distance wake vortex characteristics

craft [6-11]. This wake is an induced velocity is still open so far. Analysis shows us that the
and pressure field which is dangerous for aircraft ~ research developments in this area are insuffi-
following it. It is worth noticing that one should cient. The majority of them are scattered studies
distinguish between the concepts of wake vortex  in the flight experiment of the USA Department
and vortex path. It is correctly suggested in of Transportation program on wake vortex fol-
work [12] that there is a wake vortex following lowing the propeller aircraft. There are almost no
the body in motion developing lift (for example, approaches and mathematical models for wake
an aircraft). Whether the body in motion does  vortex following the propeller aircraft.

not develop lift (for example, a car), there is a The interest in propeller aircraft has grown
vortex path following it. recently, as they are cheaper in terms of passen-

The work focuses on a wake vortex follow- ger and cargo transportation on equal distances,
ing the propeller aircraft. Turboprop aircraft ob- in comparison to turbo-jet aircraft. Some foreign

servation shows us that wake vortex following experts estimate that service and fuel charges are
them is different from the one following the tur-  reduced by about 30-40% during passenger and
bo-jet aircraft (fig. 1). It is connected to propeller cargo transportation given the distance of
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Fig. 1. Random visualization of the wake vortex following the Antonov-12 turboprop aircraft during takeoff

700-800 km. That is why some aerospace corpora-
tions are starting the turboprop aircraft develop-
ment. For instance, the Canadian engineering
company Bombardier is now developing and pro-
ducing the twin-engine turboprop aircraft DHC-8.
Airbus Military has developed the A-400M aircraft
and started its manufacturing production. ATR is
doing the same thing. There are also Ilyushin II-
114 and Ilyushin I1-112B in use in Russia. There is
also data about other similar constructions.

Research methodology

Wake vortex following the propeller aircraft
research methodology, used in this work, is de-
scribed in details in paper [12] and article [13].
In this article it is integrated into a special calcu-
lating and software package [14], also based on
discrete wake method [15—-17]. The essence of
integration is in the following. It was necessary
to develop such a propeller mathematic model,
in which its work effect record was made
through discrete vortex points with the known
circulations and coordinates on Trefftz plane.
The fact is the long-distance wake vortex math-
ematical model of the calculating and software
package is also based on vortex points. In this
case the propeller mathematical model is inte-
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grated into the long-distance wake vortex math-
ematic model [12, 18].
Let us interpolate the following designations:
d —propeller diameter;
L — the aircraft typical linear dimension;
o — the propeller angular velocity;
V, — the airspeed,;

1, — the propeller rotor head radius;

S

I
O _ the relative propeller rotor head

radius; where R = —;

o — the propeller thrust coefficient;
n — the number of propeller blades;

A — the propeller speed coefficient;

-0 _
nd

[ — the propeller power coefficient.

The following vortex model of the propeller
(fig. 2) is developed for the given mathematical
model integration into the calculating and soft-
ware package [14]. There is an axial flow circu-
lation wake I”" in the middle of the propeller, the
n wakes are set around the propeller circumfer-
ence perimeter, modelling the propeller jet flow.
The research in work [13] showed us, that n
should correspond to the number of propeller
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blades. Then the wake circulation around the
propeller circumference will be equal to 1" /n. It
is possible to define the intensity of the propel-
ler-generated axial flow wake by formula [13],
whether the propeller work regime is set — A,

a , [ and the relative propeller rotor head di-
ameter is known:

Fig. 2. Vortex model of the propeller screw

F- 4P
—
2(1-2) ;T+\/4xn2+n3(ff&2)

Let us interpolate the axial flow non-
dimensional circulation according to formulae

for the aircraft in general, /' f=— , Where
0

Lis a typical size, then 7 and 7/ " will be
linked by formula

TwRd =T"V,L
where
s oRd :fznndi:ffj’
VoL Vy 2L A
and finally
r'=rtaq.
A
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d is a relative propeller diameter d=d /L.

Then, the vortex propeller jet flow scheme
(in Trefftz plane) will look as it is shown in Fig-
ure 1: n number of vortices, set around the cir-
cumference by the diameter equal to the propel-
ler diameter, model the propeller jet flow sur-
face. The number of vortices corresponds to the
number of blades here. Circulation of each vor-

tex is /1 / n, and spinning direction opposes the

axial flow vortex spinning direction. At the same
time the axial flow vortex produces spinning,
which corresponds to propeller spinning direc-
tion. Thus, the purpose is achieved. The vortex
points, which are modelling the propeller work,
are integrated into the calculating and software
package [14].

The results of the research

The characteristics of long-distance wake
vortex following the C-130 aircraft at 1000 m
height, at V = 51 m/s speed were calculated to
confirm the effectiveness of the developed
methodology and credibility of the results based
on them. The flight experiment data has been
obtained from paper [2] on wake vortex maxi-
mum vertical velocity measurement for this air-
craft and the flight conditions. There are the ver-
tical speed calculations behind the C-130 at dis-
tances X = 0 and 1.4 km in Figure 2. It can be
seen that the vertical speed graph is sawtooth if
X = 0 (that is fuselage longitudinal section,
rhombs). It is connected with propeller rotation
impact on the wake vortex behind the aircraft.

The whole spectrum of vertical velocity
(squares) is calculated at distance X = 1.4 km from
C-130 aircraft. It can be seen that the calculation
(squares) and flight experiment (triangles) corre-
spond satisfactorily to each other, which confirms
indirectly the credibility of the results (fig. 3).

Furthermore, the characteristics of Antonov
An-12 aircraft wake vortex were also observed.
It is shown that rotating propellers cause a no-
ticeable impact on wake vortex distribution. The
first stage shows us, how the vertical velocity
spectrum changes in the middle of An-12 vortex
without taking propeller spinning into considera-
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C-130 aircraft, V=51 m/s, H=1000 m
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Fig. 3. Vertical velocity distribution in the vortex core of the C-130 aircraft
Antonov An-12 V=420 km/h, H=500 m, SA=1
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Fig. 4. Distribution of vertical velocities in the vortex core of the An-12 aircraft
(excluding the influence of propellers)
tion (fig. 4), and with it (fig. 5). The vertical ve- rameters were extracted from An-12 cruise flight
locity was calculated at X = 10, 150, 300 u 500 diagram. The atmosphere is stable, SA =1 [12].
m distance. The speed of flight then was V =420 It can be seen that vertical velocity spectra are

km/h, and height was H= 500 m. 1, &, Epa_ significantly different in Figures 4 and 5. It is also
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V=420 km/h, H=500 m, SA=1

Vertical velocity, m/s
o

Distance, m

Fig. 5. Distribution of vertical velocities in the vortex core of the An-12 aircraft
(Taking into account the influence of propellers)

worth noticing, that propeller rotation impact on
vertical velocity almost disappears already at
X =500 m distance. It is connected with vortex
natural ease-off due to atmosphere turbulence,
along with vortex dissipation and diffusion.

At the second stage, the perturbed velocity
fields behind the An-12 at up to 2 km distance
(fig. 6) were observed. There are the results of
wake vortex characteristics calculation as the
perturbed velocity fields, which are presented as
vectors of mixed speed W, calculated by formula

W =W+ W

W. and W, are the parts of the vertical and
horizontal perturbed speed. W speed variable
can also be easily determined through step scale
in Figure 6, which size is 10 m/s.

It can be seen that the vortex symmetry from
the left and the right wing is broken while X
distance from the aircraft is increasing.
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This circumstance drastically distinguishes the
wake vortex behind the turboprop and turbo-jet
aircraft. The wake vortex following the turbo-jet
aircraft remains symmetrical for a long time on
both the left and the right wings [2, 12, 19-26].
This symmetry is broken almost at once between
the turboprop aircraft due to propeller spinning
impact. There are the works [12, 27], in which it
is shown that propellers spinning one way also
cause impact on the aircraft aerodynamic charac-
teristics. It is connected with non-symmetrical
flowing around of the aircraft airframe. There is
some yet noticeable yawing and roll during the
turboprop flight. There are some special proce-
dures implemented in some aircraft structure for
their disposal. Nevertheless, it can lead to in-
crease in drag, and, consequently, to extra fuel
costs. There are the aircraft with left and right
propellers spinning different ways which allows
to dispose airframe non-symmetrical flowing
around. For instance, A-400M by Airbus Mili-

tary.
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Conclusions

Thus, the calculation showed us that wake
vortex behind the turboprop aircraft differs dras-
tically from the one behind the turbo-jet aircraft.
The reason of such a difference is propeller rota-
tion. Propellers of almost all the used turboprop
aircraft rotate one way. Wake vortex symmetry
behind the aircraft is broken during propeller
vortex interaction with vortices from the aircraft
airframe. It is necessary for the crews of aircraft
following the turboprop aircraft to consider this
circumstance. Besides that, it is also necessary to
consider this peculiarity while providing wake
vortex safety in the vicinity of large airports,
when the safe separation between the taking-off
and landing aircraft should be maintained.
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