УДК 620.179.18

О ВОЗМОЖНОСТИ ОЦЕНКИ МИНИМАЛЬНОГО ОСТАТОЧНОГО РЕСУРСА МЕТАЛЛОКОНСТРУКЦИЙ ПО РЕЗУЛЬТАТАМ ПРОБНОГО НАГРУЖЕНИЯ С КОНТРОЛЕМ АКУСТИЧЕСКОЙ ЭМИССИИ

О.Е. ЗУБОВ

Статья представлена доктором технических наук, профессором Самойленко В.М.

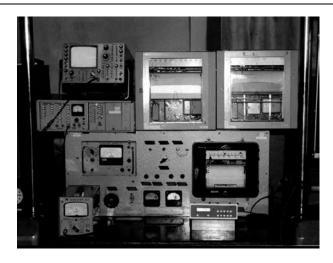

Для оценки минимального остаточного ресурса металлоконструкций предложен новый подход при использовании результатов испытаний металлоконструкций с применением метода акустической эмиссии и результатов испытаний материалов при определении критериев трещиностойкости в лабораторных условиях.

Ключевые слова: акустическая эмиссия, трещиностойкость, остаточный ресурс.

Одной из проблем, ограничивающих эффективность применения акустической эмиссии (АЭ) для оценки технического состояния конструкций, является отсутствие непосредственной количественной связи результатов контроля с остаточным ресурсом проверяемых объектов. Вместе с тем, как показывают результаты исследований работоспособности и долговечности металлоконструкций, возможна оценка их минимального остаточного ресурса. Такая оценка базируется на использовании характеристик трещиностойкости материалов и положительных результатов контроля металлоконструкций пробным нагружением с применением АЭ.

В настоящее время известны методы оценки ресурса металлоконструкций, основанные на анализе скорости развития процессов, которые способны приводить к отказам с течением времени. К наиболее опасным процессам, которые могут развиваться скрытно и приводить к внезапным авариям, относится распространение трещин. Поэтому срок службы (ресурс) многих металлоконструкций ограничивается именно временем развития трещин от исходных до критических размеров. Для оценки этого времени необходимы сведения о микротрещинах или трещиновидных и других дефектах, которые всегда имеются в реальных конструкциях, а также сведения о кинетике распространения трещин и трещиностойкости конструкционных материалов.

Наиболее сложную задачу представляет оценка исходных размеров трещины, поскольку она должна учитывать разнообразные индивидуальные особенности конструкции (ориентацию и размеры дефектов (рис. 1), неоднородность свойств материалов, остаточные напряжения и другие).



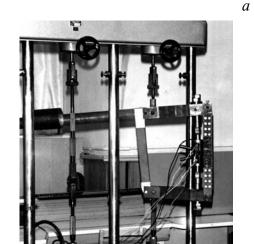
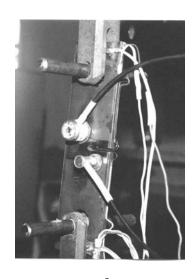
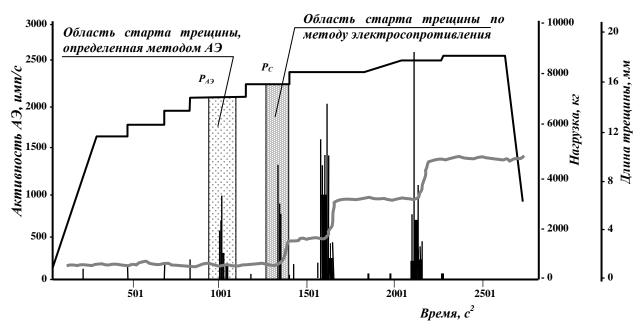


Рис. 1. Фотографии изломов образцов стали 35XH3MФA с термическим окрашиванием на разных стадиях роста трещины и поверхностные признаки распространения трещины


В настоящее время применяемые методы оценки ресурса предусматривают испытания пробными нагрузками металлоконструкций и определение трещиностойкости материалов в лабораторных условиях (рис. 2).

0.Е. Зубов



б

Рис. 2. Оборудование для регистрации роста трещины: a – аппаратура метода электросопротивления и акустической эмиссии; δ – силовая установка на замедленное разрушение с образцом материала; ϵ – образец внецентренного разрушения (BP) с датчиками АЭ

Вместе с тем, такая методика имеет ряд недостатков. В ходе пробного нагружения, если не используется АЭ, возможно скрытое трещинообразование в проверяемой конструкции. В таком случае скрытое развитие трещин может продолжаться и при более низких, чем испытательные, рабочих нагрузках. Кроме того, исходный размер трещин, которые могут оставаться после испытаний, оценивается по критическим значениям коэффициентов интенсивности напряжения исходя из принципа «разрушился - не разрушился». Но как показали результаты лабораторных испытаний металлических образцов с трещинами (рис. 3), АЭ обнаруживает начало роста трещин намного раньше, чем происходит окончательное разрушение (до 30% от разрушающей нагрузки). Большая заблаговременность обнаружения роста трещин АЭ позволяет предложить новую методику оценки остаточного ресурса, которая даст возможность полнее использовать реальную работоспособность и долговечность металлоконструкций. Основная особенность методики заключается в оценке исходных размеров трещины в случае отсутствия активных сигналов АЭ (положительных результатов испытаний). Если сигналы отсутствуют, это означает, что оставшиеся в конструкции дефекты имеют размеры менее 0,3 от критических. При этом одновременно учитывается возможность неблагоприятного сочетания различных скрытых факторов, способствующих развитию трещин.

Рис. 3. Зависимость активности АЭ и роста трещины во времени при ступенчатом нагружении образца ВР из стали 35XH3MФA

Вместе с тем, такая методика позволяет оценить только минимальный остаточный ресурс. Она не учитывает инкубационный период (он может быть в несколько раз больше минимального ресурса). Реальные размеры трещин в металлоконструкции могут быть меньше, чем рассчитываемые по методике. Поэтому срок службы металлоконструкции будет равен или больше, чем расчетный.

Практическая реализация данного подхода показала, что поведение различных металлоконструкций в условиях эксплуатации соответствует расчетным оценкам по предлагаемой методике.

ЛИТЕРАТУРА

- **1.** Основы технического диагностирования объектов военной техники: учеб. пособие / под ред. А.И. Гневко. М.: ВА РВСН им. Петра Великого, 2013.
- **2.** ГОСТ 27655-88. Акустическая эмиссия. Термины, определения, обозначения. М.: Изд-во стандартов, 1988
- **3. ГОСТ 9.903-81.** Единая системы защиты от коррозии и старения. Стали и сплавы высокопрочные. Методы ускоренных испытаний на коррозионное растрескивание. М.: Изд-во стандартов, 1982.

POSSIBILITY OF ESTIMATION OF METALWARE REMAINING LIFE ON BASIS OF TEST LOADING RESULTS WITH ACOUSTIC EMISSION MONITORING

Zubov O.E.

A new approach to metalware minimal remaining life estimation using metalware test results with acoustic emission method and materials test results with fracture strength criterion detection in laboratory environment is suggested.

Key words: acoustic emission, fracture strength, remaining life.

Сведения об авторе

Зубов Олег Евгеньевич, 1965 г.р., окончил Краснодарское ВВКИУ РВ (1987), кандидат технических наук, доцент кафедры авиатопливообеспечения и ремонта ЛА МГТУ ГА, автор 26 научных работ, область научных интересов — техническая диагностика металлоконструкций и неразрушающий контроль методом акустической эмиссии.