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The 21% century aviation and aerospace technologies have evolved and become more complex and technical. Turbofan jet engines
as well as their cousins, the rocket engines (liquid/solid) have gone through several design upgrades and enhancements during the
course of their design and exploitation. These technological upgrades have made engines very complex and expensive machines
which need constant monitoring during their working phase. As the demand and use of such engines is growing steadily, both in the
civilian and military sectors, it becomes necessary to monitor and predict the behavior of parametric data generated by these
complex engines during their working phases. In this paper flight parameters such as Exhaust Gas Temperature (EGT), Engine Fan
Speeds (N1 and N2), Fuel Flow (FF), Oil Temperature (OT), Oil Pressure (OP), Vibration and others where used to determine
engine fault. All turbo fan engines go through several distinctly different working phases: Take-off phase, Cruise phase and
Landing phase. Recording generated parametric data during these different phases leads to a massive amount of in-flight data and
maintenance reports, which makes the task of designing and developing a fault diagnostic system highly challenging. It becomes
imperative to use modern techniques in data analysis that can handle large volumes of generated data and provide clear visual
results for determining the technical status of the engine under investigation/monitoring. These modern techniques should be able to
give clear and objective assessment of the object under investigation. Cluster analysis methods based on Neural Networks such as
c-means, k-means, self-organizing maps and DBSCAN algorithm have been used to build clusters. Differences in cluster
groupings/patterns between healthy engine and engine with degraded performance are compared and used as the bases for defining
faults. Fault diagnosis plays a crucial role in aircraft engine management. Timely and accurate detection of faults is the foundation
on which maintenance turnaround times, operational costs and flight safety are based. The data used in this paper for analysis was
obtained from flight data recorder during one flight cycle. The final decision on a fault is taken by an engineer.
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INTRODUCTION

Current research in the development of engine fault diagnostics methods have effectively ad-
vanced in several directions with the two most popular. The first method is a combination of traditional
rule-based diagnostic method (e.g., expert system) with other Al (artificial intelligence) techniques,
such as neural network and fuzzy logic [1 — 3]. The other approach uses models of engine performance
and is known as model-based fault diagnostics [4, 5]. Aircraft engine health deterioration can be at-
tributed to a variety of reasons including extreme operating conditions, system malfunction, compo-
nent or sub-system failure and aging. The most pressing challenges faced by most if not every airline
are safety, airworthiness, and operational cost effectiveness. To achieve the above-mentioned goals an
effective diagnostic method based on data from the engine should form the bases for designing a diag-
nostic method. A condition-based maintenance system can be divided into two categories: model based
and data driven. Dynamic systems or sub-systems under investigation can sometimes be defined by
developing accurate mathematical models [6 — 9]. Mathematical models are used to determine the rela-
tionship between different measured signals, interpreting trends and using advanced signal processing
methods to detect faults. However, in some cases it is difficult to accurately represent a complex sys-
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tem using mathematical models and the data from the system has to be used as the basis for analysis.
That is why Data Driven Fault Diagnosis Scheme based on statistical methods, machine learning, and
statistical pattern recognition approaches are used as the basis for developing new advanced fault diag-
nostic system for aircraft engine health management. The proposed content has two basic objectives: to
show the implementation of clustering algorithms in detecting engine with degraded performance over
healthy engine, and compare cluster patterns formed.

The huge amount of data generated during the use of modern turbojet engines and other propulsion
systems, having onboard data recorders, demands for progressive new techniques in processing these para-
metric data generated during operation. Therefore, it is necessary and appropriate to use neural network-based
methods such as fuzzy c-mean, self-organizing maps and others presented in this work for fault diagnosis of
turbofan jet engine and propulsion systems with engine parameter monitoring systems onboard.

PROBLEM DESCRIPTION

Clustering is a Machine Learning Technique that involves the grouping of data points. In this
paper data points are data got from the engine monitoring system, monitoring the different working
parameters of the engine. Given a set of data points, we can use clustering algorithms such as
C-means, K-means, DBSACN and Self-Organizing Maps to classify each data point into a specific
group. In theory, data points that are in the same group should have similar properties and features
(in the case of self-organizing maps), while data points in different groups should have highly dissimi-
lar properties and features. This explanation is the most important in this work as it clearly defines that
the data from healthy engines will be similar and have features distinctly unique to them. While data
from engine with the degraded engine performance will exhibit highly dissimilar features when com-
pared to those from a healthy engine. Clustering is a method of unsupervised learning and is a common
technique for statistical data analysis.

Clustering analysis in this work should allow us to gain a valuable insight from the input data
by presenting a visual representation of the dynamic processes occurring in the object under investiga-
tion. Data points should fall into groups after clustering algorithm is initiated. It should be noted that a
clustering algorithm must meet some requirements which are listed below.

The main requirements that a clustering algorithm should meet are:
scalability;
dealing with different types of attributes;
discovering clusters with arbitrary shape;
minimal requirement for domain knowledge to determine input parameters;
ability to deal with noise and outliers.

The significance of the clustering algorithm is to extract value from large quantities of structur-
al and unstructured data. It allows us to segregate the data based on their properties/features and groups
them into different clusters depending on their similarities.

FUZZY C-MEANS CLUSTERING

Fuzzy C-means clustering was principally introduced by J.C. Dunn and improved upon by
J.C Bezdek [10, 11], and has been built upon for various applications. Fuzzy c-means is a partitive
clustering approach where a given data set is divided into K clusters in a way such that each data sam-
ple belongs to one of the clusters to some degree. In this paper fuzzy c-means is used to cluster flight
parameter data in a way that the data clusters formed are representative of the nominal and fault values
of the selected parameter.

In this paper four flight data such as: EGT (exhaust gas temperature), N1 (rotor speed), N2 (ro-
tor speed), and OT (oil-temperature) were used.
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The algorithm divides the available data into spherical clouds of data samples in a p-
dimensional space. Each cluster is then in its turn represented by its cluster center. The Euclidian dis-
tance is used to measure the distance between the cluster centre and all the points that fall within the
cluster boundary. General objective of c-means is to obtain a partitioning of a given data set which
minimizes an objective function for a fixed number of clusters. Represented by J below:

= Tiea Rjoauif % = gl O

where m — 1s any real number greater than 1
—1is the degree of membership of x; in the cluster j
; — it the i of the d-dimensional measured data
cj — is the d-dimension center of the cluster
||*|| — is any norm expressing the similarity between measured data and the center.
Fuzzy partitioning begins through an iterative optimization of the objective function J shown
above, with the update of the membership u;; and the cluster center ¢, by:
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where € — is a termination criterion between 0 and 1, whereas k are the iteration steps. This procedure
converges to a local minimum or a saddle point J,,.

INITIALIZING FUZZY C-MEANS ALGORITHM

To initialize c-means clustering for a set of data, input data is organized into a M*N matrix
called U. Flight data from a CF-34/10 turbofan engine was used in the paper. Data set was organized
into four parametric data groups: EGT, N1, N2 and Oil temperature. Below there are the initialization
steps of the algorithm:

Matlab was used for running fuzzy c-means. Educational Version

Step 1 Initialize U=[u;;] matrix, u”

Step 2 At k-step: calculate the centers vector C* = /¢ ;] with u®

Z *xl
C~ _—
]
21 1 l]

Step 3 Update U® , U
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Step 4 If //U**" — U™}/ < & then STOP; otherwise return to step 2.

Results are presented in the form of dense clusters with the centroid, represented here by (1), at
the center of each cluster formation.

Two cases were initiated and their results analyzed. For solid validation of results a SOM oper-
ation was carried out using neural network, this gave dimensional correlation of input data after under-
going batch weight/bias rules and performing the mean squared error operation. Results presented are
for validation of the process for fault diagnostics of turbofan engines. Case 1 and 2 represent input data
from a CF-34/10 engine. In Case 1, parameter registers abnormal or degraded engine performance; re-
sults are presented in Figure 1. Case 2 is the normal engine performance (fig. 2).
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Fig. 1. Results from Case Nel engine parameters, showing clearly heavy scattering of clusters with dependence
(oil/n2 and oil/nl), degraded engine performance (faulty)
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Fig. 2. Results from Case Ne2 engine parameters, showing clearly compact clusters but slight scattering
of dependence oil/n2, performance (healthy)
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The results presented in Figures 1 and 2, show that clustering method based on c-means is ca-
pable of presenting clear visual representations of input data in the form of clusters with unique pat-
terns that distinguish a healthy engine from an engine with degraded performance. Diagnostic criteria
for these results in the cluster compactness.

The SOM procedure carried out in the Neural Network shows result of Case Nel input data. Af-
ter 200 iterations SOM input plane presented the following result in Figure 3. The same procedure was
carried out for Case Ne2. The map forms a compressed representation of the inputs space, reflecting
both the relative density of input vectors in that space, and a two-dimensional compressed representa-
tion of the input-space topology.

Weights from Input 1 Weights from Input 2 Weights from Input 1 Weights from Input 2

Weights from Input 3 Weights from Input 4 Weights from Input 3 Weights from Input 4
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Fig. 3. Visualization of weights for Case Nel (CF34/10) Fig. 4. Visualization of weights for Case No2 (CF34/10)
with degraded engine performance (faulty) healthy engine (healthy)

The Figures above can also visualize the weights themselves using the weight plane (fig. 3
and 4). There is a weight plane for each element of the input vector (four, in this case). They are the
visualizations of the weights that connect each input to each of the neurons. (Lighter and darker colors
represent larger and smaller weights, respectively). If the connection patterns of two inputs are very
similar, you can assume that the inputs were highly correlated.

Algorithms for the SOM operation went through a weight and bias process and updates accord-
ing to its learning function after each epoch (one pass through the entire set of input vectors). Training
stops when any of these conditions is met: The maximum number of epochs (repetitions) is reached.
Performance is minimized to the goal. The maximum amount of time is exceeded. Validation perfor-
mance has increased more than max fail times since the last time it decreased (when using validation).
These steps enable the SOM to classify and cluster the input data correctly.

The results attained from processing the input data from a CF34/10 turbofan engine using fuzzy
c-means and self-organizing-maps algorithms, both of which are based on Neural Network, have
shown that such methods can be reliably used for fault diagnostics and classifying engine performance.
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CONCLUSION

1. The results presented in this paper show that for fault diagnostics of turbofan engine CF34/10,
the method c-means clustering algorithm is very capable of capturing and visualizing fault signatures
from parametric input data, and representing these results in the form of compact clusters (for healthy)
and clusters with higher degree of scattering for engine with degraded performance (faulty).

2. Captured fault signatures were visualized in the form of simple clusters, showing dense re-
gions to mean healthy engine and clusters with a higher degree of scattering to form engine with the
degraded engine performance.

3. The reliability of the results is consistent and corresponds with results from the self-
organizing-maps which show high level of input weight correlation.

4. Using c-means clustering and SOM to identify engine characteristics was achieved.
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NCHOJIB30OBAHUE COBPEMEHHbBIX METOJ10B KJIACTEPU3ALIUU
A HAPAMETPUYECKOU IMAT'HOCTUKHN HEUCITPABHOCTEHN
TYPBOBEHTWISATOPHBIX JIBUI'ATEJIEA

. 1
I.J. Buraimah
1 .
Hayuonanvnoe acenmemeo kocmuyeckux uccied08anuil u paspadomox
Abyoorca, Dedepamusnas Pecnybauxa Hucepus

ABHalMOHHBIE M a’poKocMuuecKre TexHoiornk XXI Beka BOJIFOLMOHUPOBAIM W CTAIN 00Jee CIOKHBIMU U TEXHUYECKHMH.
TypOopeakTHBHBIE BHTATENN, a TAKXKE MX COOpaThs, PaKeTHBIA ABUraTelb (KUAKUI/TBEpHbIA) MPOILTA Yepe3 HECKOIBKO
KOHCTPYKTHBHBIX YJTy4IIEHWH M YCOBEPIICHCTBOBAaHHMH B XO/€ MX NMPOECKTHPOBAHMS M SKCIUTyaTallMH. JTH TEXHOJIOTMYECKUE
YCOBEPIICHCTBOBAHMS CACIAIN JBUTATENN OUYECHb CJIOKHBIMH M JJOPOTMIMH MAIllMHAMH, KOTOPBIE HYXKIAIOTCS B TIOCTOSHHOM
KOHTpOJIe BO BpeMs UX paboueil (asbl. [1o Mepe Toro kak Cnpoc M UCIOJIB30BaHHE TAaKUX JIBUraTelleil HEyKIOHHO PacTyT Kak B
TPKAAHCKOM, TaK M B BOGHHOM CEKTOpaX, CTAHOBHUTCS HEOOXOAMMBIM OTCIEKHMBaTh W MPOTHO3HPOBATH IIOBEICHUE
MapaMeTPUYECKNX JAHHBIX, I'€HEPHPYEMbIX ITUMH CJIOXKHBIMH JBHTaTe/sIMH BO BpeMs ux pabounx (a3. B pabore nns
olpeieNieHHs] HeUCIIPaBHOCTH JIBUTaTeNsl UCIIONIB3YIOTCS TaKKe TapaMeTphl MojieTa, Kak Temrieparypa BbixjonHbix razos (EGT),
4acToThI BpaiueHus: BeHTusitopos jpuraresst (N1 u N2), pacxon rorumsa (FF), remneparypa macna (OT), naienue macna (OP),
BUOparws U apyrue. Bee TypOOBEHTHIIATOPHBIE IBUTATENH MPOXOAAT Yepe3 HECKOIBKO OTUYETIIMBO Pa3INYAIOIIMXCsl pabounx das:
B3JIeTa, KpPyW3a M IOCAAKU. 3alMCh TEHEPUPYEMBIX INMapaMETPUUYECKHX IaHHBIX Ha 3THX DasjMYHbIX JTanax NPUBOIUT K
OIPOMHOMY KOJIMYECTBY OOPTOBBIX JAHHBIX M OTYETOB O TEXHHYECKOM OOCITY>)KUBAHHH, UTO JIeJIaeT 3a/a4y IPOSKTUPOBAHUS U
pa3pabOTKH CHCTEMBI TMArHOCTHKN HEHCIIPABHOCTEH YPEe3BBIYAMHO MEpCIeKTUBHOW. CTaHOBUTCS HEOOXOAMMBIM HCIONIB30BaTh
COBpPEMEHHBIC METObl aHAIM3a JAHHBIX, MO3BOJIIIONIMX 0OpalaThBaTh OOJNBIINE OOBEMBI T'€HEPHPYEMBIX JAHHBIX U JIABaTh
YEeTKWE BHU3YAJbHBIE pE3yJIbTaThl UL ONPEACNCHHS TEXHWYECKOTO COCTOSHWS ABUIATElls], SIBISFOLIETOCS OOBEKTOM
MCCIIJOBAHI/MOHITOPHUHTA. DT COBPEMEHHbBIE METOIMKH JOJDKHBI OBITH CIIOCOOHBI JaTh YETKYI0 U OOBEKTHBHYIO OLICHKY
HCCIeayeMOMy OOBeKTy. JIIsi MoCTpoeHHs: KJIAaCTEepOB OBUIM HCIHONIB30BaHBI METOIbI KIACTEPHOTO aHAIN3a, OCHOBAaHHBIE Ha
HEHPOHHBIX CETSIX TaKuX, Kak c-means, k-means, camoopranusyroriuecs kaptbl 1 anroputv DBSCAN. Paznuuus B Ki1acTepHbIX
[pyHl'[I/lpOBKaX/ MaTTepHax MEXAY UCHPABHBIM JIBUTATCIIEM U NBUTATEIIEM C TOHIKEHHOM TMPOU3BOANUTEIIbHOCTHIO CPABHUBAIOTCS
1 UCTIOJIB3YIOTCS B KQYCCTBE OCHOBLI JIA ONPEACTICHUA HeHCHpaBHOCTefI. }lnar 'HOCTHKA HeMCHpaBHOCTeﬁ HUrpacT O4Y€Hb BAXKHYIO
POJIb B YIIPaBJIEHNH aBUAIIMOHHBIMH ABUraTesisiMi. CBOEBPEMEHHOE 1 TOYHOE OOHAPYKEHNE HEHCIIPABHOCTEH SIBIISIETCSI OCHOBOH,
Ha KOTOpOH Oa3MpyIOTCSI CPOKM BBINOJHEHMSI TEXHUUYECKOTO OOCITY)KMBaHUS, SKCILTyaTallIOHHBIE PacXoibl M 0Oe30MacHOCTb
nonietoB. JlaHHBIE, MCIIONB30BaHHBIE B paboTe Uil aHain3a, ObUTM MOy4YeHBI ¢ OOPTOBOTO CaMONKMCLA B TEUEHHE OJIHOTO
oJIeTHOTO KA. OKOHYATENIBHOE PEellIeHNE O HEHCIIPABHOCTH TPUHIMAET HHXKEHEP.

KunroueBbie clioBa: IMarHOCTHKA HEHMCIPABHOCTEH JBUraTeNel, apaMeTpHIeCKUe TaHHbIC, TYPOOBEHTUIISITOPHBIC PEAKTUBHBIC
JIBATATENN, MOHUTOPHHT, 00paboTKa IMOJIETHBIX NaHHBIX, HEHpOHHAs ceThb, c-means, k-means, DBSCAN, kiacTepHBIA aHAIN3,

KJIIaCTEpHBIA MATTEPH, METOBI KJIACTEPU3ALIIH, AITOPUTM, TTApaMETPHI MOJIETa, TEMIIEPaTypa BEIXJIOMHBIX Ta30B, aHATM3 JAHHBIX,
CaMOOPTaHI3YIOIIHECS KapThL.
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