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The functioning of various systems (in particular technical objects, living cells, the atmosphere and the ocean, etc.) is determined by
the course of physical and physico-chemical processes in them. In order to model physicochemical processes in the general case,
the authors previously developed a potential-flow method based on an experimental study (on the results of system tests) of the
properties of substances and processes. In the general case, from these experimental data, many possible values of these properties
are obtained. Knowing these properties of substances and processes, the initial state of the system, external influences on it (or the
set of possible values of these quantities), we can analyze the dynamics of physicochemical processes in this system, and from it the
dynamics of the characteristics of this system that have practical meaning. Thus, from the system of equations of this method, a
relationship is obtained between the unobservable characteristics of these systems with the observed characteristics of the systems
and laboratory systems under consideration (in which the properties of substances and processes in the system under study are
experimentally studied). As the potential flow equations describing the physicochemical processes are generally quite complicated
for analytical transformations, the aforementioned relationship must be obtained by numerical methods. The present work is
devoted to the use of deep learning as a universal approximator for obtaining the described connection between the characteristics
of arbitrary systems. These models are trained on the dynamics of the characteristics of the systems under consideration, obtained
from potential-flow equations of physicochemical processes in them for different values of the parameters that determine the
properties of substances and processes in these systems, their initial states, and external influences.
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INTRODUCTION

Potential -stream method is the consistent approach to the physico-chemical processes model-
ling. It was developed in previous years in the general case in the context of modern non-equilibrium
thermodynamics [1, 2]. The method coopts particular cases of physico-chemical process model [3].
A flow chart outlining the approach is shown in Figure 1 [3, 4].
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The purpose of the present article is development of unobservable and observable data of the
certain system and laboratory systems connection formula by reference to potential-stream equations
of physico-chemical processes in these systems. Basically, the observed system data at the following
timepoints might be its unobservable data (providing that we cannot wait for the future coming in the
aim of, the data measurement in it, for instance, in forecasting problems [5, 6]; nevertheless thereafter
these data will be called observed) and basically non-measurable data (basically unobservable, thereaf-
ter unobservable; is seen in diagnostic tasks [5, 6]).

DIAGNOSTIC AND PROGNOSTIC SYSTEM MODELS

Observable data amounts of the certain systemz(¢) at the following timepoints connection with
these data z(r)at the present and the previous timepoints and with the acquainted input actions on this
object s(¢) [5]:

v, (0)=F(x, (1), x,(¢).a) +e, (1), (1)

where v (r)are observable z(r)data highest derivatives; z(r); x,(r) are observable data and their

lowest derivatives; X (f ) are the acquainted input actions s (¢ )and their derivatives; q are the data de-
rived from the considered system and laboratory systems test results. Physical and chemical processes
in the considered system are researched experimentally in laboratory systems; e, (s)are the noise com-
ponents (thereafter will be called prognostic mathematic model of the considered system [5]).

Unobservable data amounts of the considered technical object y(s) at the present timepoints
with the data amounts at the previous timepoints and observable data of the system z(¢)at the present
and previous timepoints (and in the general case with the acquainted input actions on it s(¢) [5]) :

vy (1) =g(x, (1).x, (1), (), 9) +ey (), x, () =&(x, (1) %, () -q) +e5, 2)

where v,,(t) are the unobservable data y(t) of the considered system highest derivatives; x,,(t) are the
unobservable outcoming data y(t) and their lowest derivatives; e, (t) are the noise components
(thereafter will be called the diagnostic model [5]).

WAYS OF DERIVING THE DIAGNOSTIC AND PROGNOSTIC MODELS FROM
THE EQUATIONS OF PHYSICO-CHEMICAL PROCESSES

As noted above, it is necessary to suppress motional states from the potential - flow equations
system in the aim of diagnostic and prognostic models derivation (1) and (2). Motional states label the
system state at every timepoint apart from its pre-history [1-4], coefficients which obtain the features
of substances and processes [1-5] and indeterminate input actions [5].

The suppression may be realized in two ways [6]:

e analytical approach (by potential -stream equations of physico-chemical processes analytic

transformation)

e numerical approach (by using Monte-Carlo methods: statistically distributed potential-
stream equations value assignment, reckoning of the relevant system characteristics from the
coupled equations and generating the connection between these data based on their reckoned
multitude).
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In the general case analytic transitions mentioned above are quite complicated [6] due to the
compilation of potential-driven coupled equations of physical and chemical processes [1, 3, 4] (even
involving simplification, which only cumulates the complexity [6]). Thus, it is necessary to generate
the connection between the relevant technical object common sense data numerically, by using Monte-
Carlo methods [6].

There are either classical machine learning methods [7, 8] or deep learning approaches [8, 10-22]
which might be used in the aim of diagnostic and prognostic model approximation (1) and (2) by us-
ing the numerical-analytic methods. The classical methods are heading from the recognition theory
methods [9] (seen from [7-9]).

CHOOSING MACHINE LEARNING METHODS WITH THE AIM OF MODEL
GENERATING FROM THE DOUBLED PROCESS EQUATIONS

Traditional machine learning methods [7, 8] accept preprocessed data at the entry [7, 8], as
the recognition methods do [9]. That means that it is necessary to normalize the data multitudes
generated by Monte-Carlo methods to the state which traditional machine learning algorithms
work with [7, 8] in purpose of generating the correspondences between common sense data charac-
teristics mentioned above. The posterior data on connection between these characteristics is neces-
sary in the aim of normalizing these data to this state. Nevertheless, in the general case (due to the
complexity of physico-chemical process behavior [1-4]) it is also necessary to simplify these cou-
pled equations in the aim of the posterior data receiving, which tangibly enlarges the analysis
complexity.

Deep learning methods (particularly, based on neural networks), unlike the traditional
ones, do not require the preparatory data handling (in that case there are system data amounts,
generated by means of the approach mentioned above, involving Monte-Carlo methods). These
deep machine learning methods extract all the necessary features for modelling by themselves
[8, 10-22].

Nevertheless, the large training data amount is required for using the deep learning methods
[8, 10—14], but in this case the required amount of training data is derived by numerical potential-
stream coupled equations integrating for different statistically assigned amounts (according to Monte-
Carlo methods), which obtain the process dynamics in the system [5, 6, 11, 12, 14]. Consequently,
deep machine learning methods are the most appropriate ones for solving the problems of diagnostic
and prognostic models generation (1) and (2) mentioned above.

It should also be noted that the models (1) and (2) which are realized particularly by neural
networks are trained by not experimental data, but by doubled equations of physico-chemical process-
es in the system. The model coopts physical and chemical process features of the system due to this.
The model accepts experimental data at the entry after the training by doubled potential-stream equa-
tions of physical and chemical processes [6, 11, 12, 14].

Symbolic regression methods are also universal approximators [23-26]. It is seen from [23-26]
that these models are of neural network configuration. Symbolic regression models generation and
training is analogous to the one of neural networks [16-26]. Moreover, both symbolic regression and
neural network approximation is based on the approximation generalized theorem [15, 16, 18, 20]. Us-
ing of neural networks structure automatic design methods along with genetic algorithms, also robotiz-
es neural network (approximation model) structure establishment [19-22], by analogy with symbolic
regression methods [23-26].

It should also be noted that it is enough to take one nonlinear element and to build approxima-
tion models [12, 15, 16, 18, 20] involving it in the aim of solving the approximation problems (along
with the problems covered in the present article) by using neural networks or symbolic regression
methods. Nevertheless, in this case approximation is becoming tedious [20], consequently, it is neces-
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sary to use different nonlinear functional relations in the aim of making the model as simple as possi-
ble. That is what symbolic regression and neural network methods coopt along with the neural network
automatic design [20].

Moreover, involving methods of representation and rendering the information from the neu-
ral networks [17, 27] along with the block-oriented synthesis and neural network training [12, 17]
makes using of the neural networks intuitive (along with involving the symbolic regression
methods).

The analytic simplification of the potential - data driven equations mentioned above is also
reduced to the symbolic regression and, consequently, to the neural networks, analogical to it.

Consequently, choosing the method of diagnostic and prognostic modelling (1) and (2) from
the potential-data driven physical and chemical equations, using either the neural networks, involving
the neural network automatic design and representation and rendering the information or the symbolic
regression, is matched. Thus, thereafter the matter will concern the neural networks representing these
models (1) and (2).

THE DESIGN OF NEURAL NETWORKS REPRESENTING
THE DIAGNOSTIC AND PROGNOSTIC SYSTEM MODELS

The main neural network function in the context of the current task is the data approximation
(that was mentioned in the works [10-13, 15, 16, 18, 20]). The data is received from the potential-
stream equations of physico-chemical processes. The neural networks offer the multilayer perceptron,
the feedforward neural networks.

There is the algorithm of making such an approximation multilayer perceptron, as simple as
possible (at the cost of choosing the approximation functional relations) [20]. It is based on the
network building-up, training and reduction (extra neuron and synaptic links removal [20]) combi-
nation. It is seen from [20] that simplification of neural network structure is analogous to the one
for the analytical formulas, along with the neural network building-up which is analogous to the
one for the clarification of the analytic formulas (by the methods, mentioned in the works [23-26],
seen from [20]).

It is seen in the Figure 1 that the dynamics of the certain technical object are obtained by [5, 6]:

o the coefficients of the functional substance features development (which do not change from

one given model system item to another one, do not depend on its mode of operation, are ob-
tained by laboratory system set tests);

¢ the individual system characteristics (which do not depend on the given model system mode

of operation but change from one its item to another one, are obtained from its control mode
of operation);

o the reference state, system external actions (which depend on the given model system mode

of operation and change from one its item to another one).

Thus, in the first place it is necessary to suppress the dynamic state coordinates and indetermi-
nate certain system external actions [6] from the doubled potential-data driven equations; the diagnos-
tic and prognostic models (1) and (2) will be generated up to the individual characteristics p and the
coefficients of functional substance and process features ¢ [6] development (formal diagnostic and
prognostic models [6]):

Vz(t):f(xz(t),xs(t),p,c)+ez(t), 3)
Vy (t) =§<Xy (t)’xz (l‘),xs (t),p,c)+ey (t)’ Xy (tO) :é(xz (Zo)axs (l‘o),p,c)+ey, 4)
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In the general case the equations might be noted down this way:

v, (6) =T (x,(£),%,(1).p".¢ ) +e, (1), 5)
v, (1) :g(xy (1).x,(¢),x, (t),p*,c*)+ey (1), x,(%) :é(xz (1), (to),p*,c*)+ey, (6)
where

p"=b,(p,c), ¢ =b./c), (N

at
dim(p*) < dim(p), dim(c*) < dim(c). (8)

Thereafter the coefficients ¢* are “the general coefficients of the certain system model”, and
the coefficients p* are “the presented individual characteristics of the technical object”. In the fulfill-
ment of the condition (8) general case it is appropriate to obtain the ¢* and p* characteristics, but not
the ¢ and p (from the results of laboratory system set tests and control tests).

In the aim of formal prognostic and diagnostic models (3) and (4) generation according to the
given methods we shall assign the multitude of the amounts at the entry (in the Figure 2a), according
to the Monte-Carlo methods, and train the multilayer perceptron mentioned above, which represents
the formal diagnostic and prognostic models (3) and (4) of the object (Figure 2). Thereafter, involving
the approach mentioned above we shall receive extra (test) data, then check the trained multilayer per-
ceptron (Figure 2) basing on them, and update the perceptron whether it is necessary.

Then we shall simplify the multilayer perceptron using the approaches mentioned above
(and in [20]). It is appropriate to represent the perceptron in the block configuration (Figure 2b) after
such a simplification. Such a simplified perceptron represents formal diagnostic and prognostic models
(5) —(7), from (3) and (4).

In order to generate the model (by the methods [11, 14]), which links the results of laboratory
system set tests with the ¢ coefficients of the substance and process functional development (or with
the general ¢* coefficients of the certain system model in case of the condition (8) fulfillment) the
amounts at the entry are statistically assigned according to the Monte-Carlo methods (in the Figure 3);
the model of the multilayer perceptron mentioned above is trained basing on this multitude (Figure3).
The compressibility of these dynamics is in operation during the training (we shall get the appropriate
coefficients which will be the results of the laboratory system set tests; rated). There after we shall
generate the test data for testing the multilayer perceptron which represents the connection between the
c coefficients (or the general ¢* coefficients in case of the condition (8) fulfillment) and the appropri-
ate results of the laboratory system set tests, then test the perceptron (Figure 3) and update it whether
it is necessary.

In the aim of obtaining the individual p characteristics (or the presented individual characteris-
tics p*of the technical object in case of the condition (8) fulfillment) using the methods [11,14] it is
necessary to train the multilayer perceptron, which represents the connection between the p character-
istics (or the presented individual p* characteristics of the technical object in case of the condition (8)
fulfillment), the ¢ coefficients (or the ¢* coefficients in case of condition (8) fulfillment) and the re-
sults of the technical object tests (Figure 4), analogically to the mentioned above. Then the data are
received using the given approach, the perceptron is being tested (Figure 4) basing on them and is be-
ing updated whether it is necessary.
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Thus, the mathematical model of the considered technical object (up to this object and laborato-
ry system test activity) generated by the described approach from the physico-chemical process equa-
tions in this object and in the laboratory systems has three components:

e formal diagnostic and prognostic models (3) and (4) (or (5) — (7) in case of condition (8) ful-

fillment);

¢ model for linking the ¢ coefficients (or the ¢* characteristics coefficients in case of the con-
dition 8 fulfillment) with the laboratory system test activity results;

e model for linking the individual p characteristics (or the presented individual p* character-
istics in case of condition (8) fulfillment with this object test activity results).

Such generated mathematical models ought to be checked basing on the results of the extra

technical object tests.
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Such mathematical models ought to be generated in the same way for the laboratory system
sets in the aim of checking the models basing on the laboratory system set tests results and, conse-
quently, for checking the reasonability of the reference information.

CONCLUSION

The present work covers numerical-analytic methods of generating diagnostic and prognostic
models of the certain system from the coupled potential-stream equations of the physical and chemical
processes in the objects up to the object and laboratory system test results, based on the deep learning
methods. Moreover, it is seen that the given numerical - analytic methods might be suitable for build-
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ing the model of any coupled equations of physical and chemical processes (not only the potential-
stream equations). The neural network model for the angular velocity of the electric motor is synthe-
sized basing on the approach described in the article [14].

Involving the block representation of the physical methods (along with the potential- stream
approach [4]) and robotizing the mathematic model generating approaches from the coupled equations
of physico-chemical processes, described in the present work, we shall receive the robotized system of
generating the certain system mathematical model by analyzing the physical and chemical processes in
the system and the test results.
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UJIEHTUOUKAIIUS MOJEJIEA CUCTEM
U3 MMOTEHIHUAJBHO-TOTOKOBBIX YPABHEHU HA OCHOBE
I'IYBOKOI'O OBYYEHMUA 11O DOKCIIEPUMEHTAJIBHBIM TIAHHBIM

1 1
NL.E. Crapoctun , C.I1. XamoTuH
1 . . . .
Mocxosckuii 20cyoapcmeenHblil meXHU4eCKUll YHUsepCumem eparicOaHcKoll asguayuu,
2. Mockea, Poccus

OyHKIMOHMPOBAHNE PA3NIMYHBIX CUCTEM (B YAaCTHOCTH, TEXHHUYECKHX OOBEKTOB, KMBBIX KIIETOK, aTMOC(ephl M OKeaHa W T.I.)
OIIpeIeNsieTCs] IPOTEKAaHNEM B HUX (DM3MYECKNX U (DUBMKO-XMMHYECKUX IPOIeccoB. [l MOIETMPOBaHUS (PU3NKO-XUMUYECKHX
MPOIIECCOB B OOIIEM Cllydae paHee aBTOpaMH ObUI pa3paboTaH MOTEHIMAIBHO-TIOTOKOBBI METOJ, OCHOBaHHBIA Ha
SKCIEPHMEHTAJIbHOM HCCIIEZIOBAaHNH (Ha pe3yJIbTaTax MCHbITAHWI CHCTEM) CBOWCTB BEILECTB M MpoIeccoB. B obmiem ciaydae u3
3THX JKCHEPUMEHTAIBHBIX JAHHBIX TOTy4YacTCs MHOXKECTBO BO3MOXKHBIX 3HAUCHUIT 9TUX CBOMCTB. 3Hasl 3TU CBOICTBA BEIIECTB U
MPOLIECCOB, HAYAIBHOE COCTOSHUE CHCTEMBbl, BHEIHHE BO3ACHCTBHS HAa Hee (WM MHOXKECTBO BO3MOXKHBIX 3HAUEHHMH 3THX
BEJIMYMH), Mbl MOJKEM aHAIN3MPOBATh IUHAMUKY (DM3UKO-XHMMHYECKHX IIPOLIECCOB B 3TOH CHCTEME, a W3 HEe — IHMHAMHKY
MMEIOLIMX TPAKTHYECKUH CMBICIT XapaKTePUCTHK 3TOW cUcTeMbl. TakuM o0pa3oM, M3 CHUCTEMbl YPaBHEHHMI 3TOr0 MeToja
TOJTy4aeTcsl CBSI3b HEHAOJFOJAEMBIX XapaKTEpPUCTHK STHUX CHUCTEM C HaOMIOIaeMbIMHM XapaKTEPUCTHKAMH paccMaTpHBAEMBbIX
CHCTEM U JIaDOpaTOpHBIX CUCTEM (B KOTOPOM OKCIEPUMEHTAIBHO HCCIEAYIOTCSI CBOKMCTBA BELIECTB M MPOLIECCOB B
paccmarpuBaeMoii cucreme). T.K. ITOTEHIMAIBHO-TIOTOKOBBIE YpaBHEHHS, OIHCHIBAIONIME (PH3HKO-XMMHYECKHE IPOLIECCH, B
o011eM citydae JIOCTaTOYHO CIIOXKHBIE I aHAIMTUYECKHX IPe0Opa3oBaHuid, TO BBIICYTIOMSHYTYIO CBSI3b HEOOXOAMMO TIOJTy4aTh
YHCIIEHHBIMH MeTojaMHu. Hacrosimas pabora IOCBSIIEHA HWCIHONB30BAaHHIO TUTyOOKOTO OOy4eHMs KaK YHHUBEPCAIBLHOTO
aIpOKCUMAaTopa ISt MOJIyUEeHHs OIMCAHHOM CBS3M MEXIY XapaKTepUCTHKAMH MPOM3BOJIBHBIX CHCTEM. JTH MOZAEIH 00y4aroTCs
Ha JWHAMUKaX XapaKTEPHUCTHK PAacCMATPUBAEMBIX CHCTEM, MOJIyYEHHBIX W3 MOTCHIMATIGHO-TIOTOKOBBIX YpaBHEHMH (hu3nKo-
XMMHYECKHX TPOIIECCOB B HHUX IPH PA3HBIX 3HAYCHHSX MapaMeTpPOB, ONPEAEIIOIINX CBOMCTBA BELIECTB M IPOLECCOB B 3THX
CHCTEMaX, MX Ha4YaJIbHBIX COCTOSHMSX, BHEITHMX BO3ICHCTBHSIX.

KitioueBble c10Ba: (U3MKO-XUMHUYECKHE IMPOLECCHI, MATEMATHYECKOS MOJICIMPOBAHKE, MOTCHIMATIBHO-TIOTOKOBBIA METO,
IiTy0oKOoe 00yUeHHE.
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